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Abstract

We introduce a series of articles reviewing various aspects of integrable
models relevant to the AdS/CFT correspondence. Topics covered in these
reviews are: classical integrability, Yangian symmetry, factorized scatter-
ing, the Bethe ansatz, the thermodynamic Bethe ansatz, and integrable
structures in (conformal) quantum field theory. In the present article we
highlight how these concepts have found application in AdS/CFT, and

provide a brief overview of the material contained in this series.
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In this article we introduce a series of articles reviewing aspects of integrable models. The
articles provide a pedagogical introduction to the topic of integrability, with special emphasis
on methods relevant in the AdS/CFT correspondence. After a brief motivation regarding
the value of general integrable models in the development of theoretical physics, here we
discuss the application of the framework of integrability to the AdS/CFT correspondence.
We then provide an overview of the material contained in the various reviews, referring
back to AdS/CFT applications, and indicating links between the reviews themselves and to
the relevant literature. While written with an AdS/CFT background in mind, the methods

covered in the reviews themselves have applications throughout the wider field of integrability.

Integrability

Integrable models appear throughout theoretical physics, starting from classical mechan-
ics where models such as the Kepler problem can be solved—in the sense of the Liouville
theorem—Dby integration. In general, integrable models show special behaviour due to many
underlying symmetries, symmetries due to which they can often be exactly solved. Only a
fraction of the physical systems appearing in nature can be described in these terms. Never-
theless, integrable models offer insight into real-world situations through universality, or when
used as a theoretical laboratory to develop new ideas. In statistical mechanics for example,
many subtleties of the thermodynamic limit have been understood by working out specific
models, notably phase transitions in the Lenz-Ising model and the role of boundary conditions
in the ice model. In hydrodynamics, the Korteweg-de Vries equation illustrates how a non-
linear partial differential equation can admit stable, wave-like localized solutions: solitons. In
condensed matter physics, both integrable quantum spin chains and one-dimensional gases
of almost-free particles play a pivotal role. Finally, in quantum field theories (QFTs) in two
space-time dimensions, exactly solvable models helped unravel phenomena like dimensional
transmutation, as in the case of the chiral Gross-Neveu model, or concepts like bosonisation,
as in the case of the sine-Gordon and Thirring models. The general framework to study such
integrable QFTs, mainly associated to inverse and factorized scattering, was laid down in

the 1970s and has found numerous applications since.

Integrability in AdS/CFT

In recent years, the general framework of integrability has been successfully applied in the
context of the AdS/CFT correspondence [I], a concrete realisation of the holographic prin-
ciple [2]. According to this correspondence, string theory on anti-de Sitter (AdS) backgrounds
is dual (equivalent) to conformal quantum field theory (CFT) on the “boundary” of AdS. The



canonical example of this duality is the correspondence between closed type IIB superstrings
on AdS5 x S® and N = 4 supersymmetric Yang-Mills (SYM) theory in four dimensions. Both
sides of this duality can be studied using integrability-based techniques, at least in the so-
called planar limit. Similar ideas apply to lower dimensional AdS backgrounds, as well as to
deformations of these backgrounds. Part of this progress is reviewed in e.g. [3], 4} [ [6, [7, [§].

In the AdS/CFT context, integrability enters naturally on the string theory side as a
property of particular two dimensional field theoriesE The details of two dimensional field
theories can be such that their classical equations of motion can be tackled by the inverse
scattering method, an approach initiated in the 1960s [9] and mainly developed in the following
decade [I0]. In particular, the equations of motion of such integrable field theories can be
represented as the flatness of a so-called Lax connection. Now in the planar limit, closed
string theory reduces to field theory on a two-dimensional cylinder—the worldsheet of a
single string—and this field theory is integrable [I1] in the above sense. By expanding the
machinery of classical integrability it is possible to tackle the semi-classical spectrum of
integrable field theories as well, resulting in what is known as finite-gap equations [12]. The
semi-classical limit of our closed string can be approached in this spirit [I3], see also [14].
Moving beyond the semi-classical spectrum is more involved, as will come back shortly.

The integrability appearing on the CFT side of AdS/CFT is that of integrable spin
chains. Integrable spin chains such as the Heisenberg spin chain can be solved by the Bethe
ansatz [15]. This is an ansatz for the eigenfunctions of a spin-chain Hamiltonian, written
in terms of collective excitations called magnons or spin waves, and their scattering matrix
(S matrix). There is an underlying algebraic structure however, based on an R matriz and
Lax matriz, which leads to the algebraic Bethe ansatz also known as the quantum inverse
scattering method [16]. Historically, the appearance of an integrable spin chain was the first
indication of integrability in AdS/CFT [17]E| Working in N/ = 4 SYM theory at one loop
order, Minahan and Zarembo showed [I7] that by identifying single-trace operators with
particular spin-chain states, the dilatation operator—whose eigenvalues yield the anomalous
dimensions of such operators—becomes the Hamiltonian of an integrable spin chain [19],
whose spectrum can be found via the Bethe ansatz.

Though different in their appearance, these two types of integrability share a common
symmetry structure. Two-dimensional integrable field theories typically have infinitely many
conserved charges that can be packaged into a powerful algebraic structures, and these same
structures come back in spin chains. A prototypical example of such a structure, particularly

important in AdS/CFT, is the Yangian algebra [20]. Indeed, the classical integrability of the

'Our exposition is not chronological. Some historical aspects are discussed in [4].
2In the context of gauge theory, integrability was previously encountered in high energy hadron scattering
in QCD [I§].



string brings with it an infinite set of conserved charges [I1], which form a Yangian algebra
that can also be seen as the symmetry of the quantum spin chain of SYM [21].

Going beyond one loop in SYM, or semi-classics in string theory, requires more work,
but is possible. The presence of integrable structures at higher loops in SYM [22, 23] 24]
makes it possible to find an exact S matrix for the spin chain magnons [24] and write down
an asymptotic Bethe ansatz [23]. This S matrix and Bethe ansatz have counterparts in the
dual string theory [25 26, 27]. There, the S matrix is simply the worldsheet S matrix of
the light-cone gauge-fixed string [27]. To define this S matrix and the associated asymptotic
states we need to take the limit where the length of the gauge-fixed string (volume of the
theory) goes to infinity. The asymptotic Bethe ansatz then arises by re-imposing periodic
boundary conditions on approximate wavefunctions obtained from the S matrix using the
ideas of factorized scattering.

The reason for distinguishing the asymptotic Bethe ansatz from the (exact) Bethe ansatz
is clear on the string theory side: merely imposing periodic boundary conditions while work-
ing with the S matrix of the infinite length string, neglects possible virtual particles wrapping
around the worldsheet (cylinder) [28]. This failure of the asymptotic Bethe ansatz for the
string [29] is paralleled by a similar breakdown in the N' =4 SYM spin-chain [30]. Here the
dilatation operator features interactions whose range increases with the loop order, so that
eventually the interaction range is of the order of the length of the composite operator under
consideration, and the Bethe ansatz breaks down. In relativistic field theory models these
finite size effects can be understood by integrability techniques [311, [32] using the thermody-
namic Bethe ansatz [33]. Extending these ideas to the integrable string sigma model gives the
AdS;/CFTy thermodynamic Bethe ansatz [34] and its improvement known as the quantum
spectral curve [35]. Tt is now possible to compute the energy of closed string states nonper-
turbatively with arbitrary numerical precision, or analytically in a weak coupling expansion
up to loop orders prohibitively difficult to reach by conventional techniques.

The chain of reasoning leading up to this description of the spectral problem involves vari-
ous unproven albeit well-tested assumptions, in particular the hypothesis that integrability
persists at the quantum level at arbitrary coupling. In some simpler models—specific con-
formal field theories and their massive deformations—the resulting structures can be more
rigorously derived from first principles by methods introduced by Baxter [36] and developed
by Bazhanov, Lukyanov and Zamolodchikov [37]. Doing so in the AdS/CFT context would

undoubtedly provide remarkable insights, but thus far the answer appears to be elusive [38].



The articles

Beyond the spectral problem for AdS;/CFT, described above, integrability based approaches
to other observables and other instances of AdS/CFT are being actively pursued. While this
landscape is motivation for this series of articles, we do not aim to review all of it. Rather,
we review some of the key ideas upon which the progress in this field is based, ideas which
can often be introduced and understood in simpler models. In fact, these ideas and methods
are central to many integrable models and not just those appearing in AdS/CFT, and as
such the material presented in this series is relevant to integrability in general.

Our aims have required us to make choices: we will cover a relatively broad set of tech-
niques and highlight how they are related to each other, at the expense of the details of the
many models where they can be applied. Our key example is the chiral Gross-Neveu model,
as a good compromise between keeping relevant features of general integrable models and
reducing technical complications. Where appropriate, the individual chapters contain further
references to the AdS/CFT or integrability literature.

Below we give a detailed overview of each of the chapters, appearing in their suggested
reading order [39, 40, 41], 42, 43, 44]. The lectures on Classical Integrability and Yangian
Symmetry give the historical and mathematical background for the other lectures. After-
wards we turn our attention to scattering matrices, with special focus on integrable scattering
in two dimensional QFTs. Building on this, we discuss how to obtain (asymptotic) Bethe
ansatz equations, both in the original and algebraic approach. Next, we move to the thermo-
dynamic Bethe ansatz as a tool to describe integrable models either at finite temperature or
at finite size. The last article explores the relation between the symmetries stemming from
integrability and those of conformal symmetry in two-dimensional QFTs, tying together most
of the material presented in the previous articles. We have aimed to keep notation uniform

throughout the articles.

Chapter I: Classical Integrability. The chapter on Classical Integrability [39] deals with
classical Hamiltonian systems which are integrable by Liouville’s theorem, and explores the
algebraic techniques which are available to exactly solve such systems. This part is mostly
concerned with the classical inverse scattering method, where Lax pairs and r-matrices are
treated and their properties outlined, culminating in a discussion of soliton solutions and
the Gel’fand-Levitan-Marchenko equation. Although most of the these topics are reviewed
in standard monographs, such as [45], some of the algebraic aspects—such as the Belavin-
Drinfeld theorems [46]—tend not to be, and are here presented in a compact uniform fashion.

This section introduces tools of classical integrability that play an important role in de-

scribing strings on various anti-de Sitter spaces [4, 6]. Although the applications to string



theory are rich of algebraic complications (see for instance [47},[7]), the basic ideas are practic-
ally the same as those contained in this review, which therefore works as a good entry point
for anyone interested in delving into the modern topics connected to AdS/CFT integrability

in the strong coupling (classical string theory) regime.

Chapter II: Yangian Symmetry. The quantum Yang-Baxter equation represents one
of the most prominent features of integrable models. The lectures on Yangian symmetry of
this chapter [40] deal with the algebraic structure that underlies rational solutions to this
equation. The Yangian beautifully extends the concepts of classical integrability reviewed
in Chapter I [39]. Mathematically, this symmetry enhances an ordinary Lie algebra to a so-
called quantum group with the structure of a Hopf algebraﬂ In physical models, the crucial
difference of the Yangian to ordinary Lie algebra symmetries lies in the fact that the Yangian
generators represent non-local symmetries, which act on a discrete or continuous space. This
one-dimensional space can be realized in many different ways making the Yangian a rather
universal concept with strong implications for a given theory—classical or quantum.

In particular, the Yangian appears in the context of (1+1)-dimensional field theories,
in spin chain models and it underlies the integrability of the AdS/CFT correspondence.
Its prime application is to bootstrap integrable scattering matrices which are discussed in
Chapter 11T [41], and its algebraic structure provides the basis for the Bethe ansatz reviewed
in Chapter IV [42]. Keeping an eye on the historic development, we provide an introduction
to the subject that contains both the more mature discussions of Yangian symmetry in two-
dimensional models (see e.g. [48]), as well as its modern application to the gauge/gravity
duality (see e.g. [49]). Generic definitions and concepts are illustrated by means of examples
including the two-dimensional chiral Gross-Neveu model, the Heisenberg spin chain, as well
as N = 4 super Yang-Mills theory in four dimensions. These lectures aim at providing an
introductory overview, which draws connections between different physical applications and

mathematical aspects of the rich subject of Yangian symmetry.

Chapter ITII: S matrices and Integrability. The third chapter [41] of this collection
deals with a fundamental object in quantum integrable theories: the S matrix, i.e. the
operator that maps initial to final states in a scattering process.

First of all, knowing the S matrix is crucial for calculating the energy spectra in the
large volume limit, via the derivation of the asymptotic Bethe ansatz, as will be reviewed
in Chapter IV [42]. Beyond the asymptotic regime, the S matrix is a key ingredient for the
leading and exact finite-size corrections of the energies, calculated by the Liischer formulas

and the thermodynamic Bethe ansatz respectively, both discussed in Chapter V [43].

3The Yangian represents one member of the family of quantum groups that are found in integrable models.



The miracle happening in (141)-dimensional integrable models, as we will explain in
this chapter [41], is the possibility to determine the S matrix exactly, due to the highly
constraining conservation laws of these particular theories and few analytical assumptions.
This also makes it possible to derive the S matrices for bound states, if any, of the theory.

From an algebraic point of view, the S matrix can often be identified with a representation
of the universal R-matrix of a Hopf algebra, reviewed in Chapter II [40]. This places the
properties of the S matrix in an algebraic setting, and allow us to generalize its derivation
also beyond the relativistic case.

Finally, the role played by the S matrix in the determination of form factors will also be
briefly mentioned, and the S matrices of sine-Gordon, SU(2) and SU(3) chiral Gross-Neveu
models will be discussed. Through these examples, it will be possible to show how to derive
the exact S matrices and some simple form factors in practice, both for fundamental and
bound states. We will also briefly discuss non-relativistic S matrices and overview their

applications to the AdS/CFT correspondence.

Chapter IV: The Bethe Ansatz. Bethe ansatz techniques originated from the explora-
tion of spin chains as models of condensed matter systems. The same methods also turned
out to play a key role in computing the spectrum of 2d integrable field theories. These two
applications have been recently united in the context of integrability in the AdS/CFT cor-
respondence. The Bethe ansatz in AdS/CFT [23] realizes a beautiful interpolation between
integrable spin chains on the gauge theory side [I7] and the integrable structure of a 2d sigma
model on the string theory side [25].

Chapter IV of this collection [42] covers various aspects of the Bethe ansatz in a ped-
agogical way, serving as a preparation for understanding its applications in AdS/CFT. This
chapter logically continues the article dedicated to exact S matrices [41]. It is discussed how,
knowing the S matrix, we can use the Bethe ansatz to find the theory’s non-perturbative
spectrum, albeit only in large volume. As explicit examples, the two-dimensional SU(2) and
SU(3) chiral Gross-Neveu models are considered. We will see that to compute the spectrum
one should first solve an auxiliary spin chain, which in these cases is the famous Heisenberg
XXX model. Its solution is covered in detail, including the coordinate and the algebraic Bethe
ansatz approaches, as well as the nested Bethe ansatz in the SU(3) case. It is also demon-
strated that in the classical limit the Bethe equations encode a Riemann surface known as
the spectral curve of the model. Finally, it is shown how the familiar 1d oscillator in quantum

mechanics can be solved via a Bethe ansatz-like method.

Chapter V: The Thermodynamic Bethe Ansatz. The thermodynamic Bethe ansatz
(TBA) is a method used to describe the thermodynamics of integrable systems solved by



the Bethe ansatz, resulting in a set of integral equations whose solution determines the
free energy of the model in thermodynamic equilibrium. After its inception at the end of
the sixties by Yang and Yang [33] to describe the thermodynamics of the one dimensional
Bose gas with delta function interaction (the Lieb-Liniger model), the TBA was quickly
and broadly adopted. Its use now ranges from describing the thermodynamics of integrable
spin chain models such as the XXZ spin chain [50], to computing the spectra of integrable
field theories on circles of finite circumference [31], 32] and beyond. This is how the TBA
originally entered in the AdS/CFT correspondence for instance: the exact energy spectrum
of the AdS5 x S® superstring is encoded in a set of TBA equations [34]. At the same time,
equations of TBA type arise in determining the area of classical string worldsheets [51] for
example.

The fifth chapter of this series [43] provides an introduction to the TBA, focussing on the
conceptual ingredients—root distributions, counting functions, particle and hole densities,
the string hypothesis in case of bound states—that underlie this method. We illustrate this
discussion on concrete examples, starting from simple free electrons, then the original Bose
gas, and finally the XXX spin chain and SU(2) chiral Gross-Neveu model as respectively
spin chain and field theory examples with nontrivial string hypotheses. We also discuss the
simplification of TBA equations, the derivation of Y systems from TBA equations and the
equivalence between the two modulo analyticity data, and the use of the TBA in finite volume

integrable field theory, including excited states and Liischer formulae.

Chapter VI: Integrable Structures in Quantum Field Theory. The expression “in-
tegrable structures” appearing in the title of this article can be interpreted in two different
ways. On the one hand, it is used as a label for fundamental objects appearing in quantum
integrable models, that is to say integrals of motion, transfer matrices, Baxter ()-operators
and so on. There exists, however, a broader meaning to this expression, referring to the
nature and the properties of the algebraic foundations on which the quantum integrable the-
ories stand. The fundamental objects named above then appear as the main characters in
the story of the integrable structures. This tale has been known for decades in the case of
spin chains and lattice models [36], but it was only in the nineties that it was first told for a
2D quantum field theory [37,52]. The approach of Bazhanov, Lukyanov and Zamolodchikov,
nowadays referred to as the BLZ method, was the first successful attempt at the construction
of the fundamental integrability objects from the algebraic structure of a field theory. Al-
though this does not deal directly with theories associated to sigma models and AdS/CFT,
it nonetheless provides general recipes with broader applications [32, 53]. Another import-
ant, pedagogical aspect, is that the BLZ method employs an array of mathematical concepts

with connections to most approaches to integrability. In this way, the sixth chapter of this



series [44] can serve as a playground where the methods and concepts discussed in the other

chapters can be put in motion.
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1. Introduction and Motivation

In this section, we give a very short introduction and motivation to the subject. It would
be a titanic effort to provide even just an adequate list of references. Therefore we will
simply mention a few, relying for the others on the many reviews and books available by
now on this topic.

Let us point out that the main source for these lecture notes is the classic textbook by
Babelon, Bernard and Talon [1]. The reader is also encouraged to consult [2-5].

1.1. Historical Remarks

Soon after the formulation of Newton’s equations, people have tried to find exact solutions
for interesting non-trivial cases. The Kepler problem was exactly solved by Newton himself.
Nevertheless, apart from that, only a handful of other problems could be treated exactly.

In the 1800s Liouville refined the notion of integrability for Hamiltonian systems, provid-
ing a general framework for solving particular dynamical systems by quadratures. However,
it was not until the 1900s that a more or less systematic method was developed. This goes
under the name of the classical inverse scattering method. It was invented by Gardner,



Green, Kruskal and Miura in 1967, when they successfully applied it to solve the Korteweg-
deVries (KdV) equation of fluid mechanics [6], and it was further developed in [7,8].

The quantum mechanical version of the inverse scattering method was then elabor-
ated during the following decade by the Leningrad — St. Petersburg school (see for in-
stance [9]), with Ludwig Faddeev as a head, and among many others Korepin, Kulish,
Reshetikhin, Sklyanin, Semenov Tian-Shansky and Takhtajan. They established a sys-
tematic approach to integrable! quantum mechanical systems which makes connection to
Drinfeld and Jimbo’s theory of quantum groups [11], paving the way to the algebraic refor-
mulation of the problem. This approach has the power of unifying in a single mathematical
framework integrable quantum field theories (cf. [12]) together with lattice spin systems
(cf. [13]).

It is probably appropriate to mention that integrability is still not the same as solvability.
The fact that the two things very often go together is certainly what makes integrable
theories so appealing, nevertheless one requires a distinction. There exist integrable systems
which one cannot really solve to the very end, as well as exactly solvable systems which
are not integrable’. Solvability ultimately depends on one’s ability and computational
power. Integrability rather refers to the property of a system to exhibit regular (quasi-
periodic) vs. chaotic behaviour, and to its conservation laws. This enormously facilitates,
and, most importantly, provides general mathematical methods for the exact solution of the
problem. The same holds for the quantum mechanical version, where integrability implies
very specific properties of the scattering theory and of the spectrum, as it will be amply
illustrated during this school.

Nowadays, integrability appears in many different contexts within mathematics and
mathematical physics. The list below includes only a very small subset of all the relevant
research areas.

1. Classical integrability®
Theory of PDEs, Differential Geometry, General Relativity, Fluid Mechanics.

2. Quantum integrability:
Algebra, Knot Theory, Condensed Matter Physics, String Theory.

'The term integrable referring to a field-theoretical (infinite-dimensional) model originates from [10].

2The first statement is particularly relevant for quantum integrable systems on compact domains, such
as those described in Stijn van Tongeren’s lectures at this school [14]. For such systems, the spectrum is
encoded in a set of typically quite complicated integral equations - Thermodynamic Bethe Ansatz - which
can often only be solved via numerical methods. The second statement can instead be exemplified by those
dissipative mechanical systems - such as a free-falling particle subject to air resistance - which are not
integrable (and, in fact, not conservative either) but admit an exact solution. A more elaborated example
is however the one of ezactly solvable chaotic systems - see for instance [15].

3We would like to point out a conjecture put forward by Ward in 1985 [16] (see also [17]): “.. many
(and perhaps all?) of the ordinary and partial differential equations that are regarded as being integrable or
solvable may be obtained from the self-dual gauge [Yang-Mills, ndr.] field equations (or its generalisations)
by [Ad dimensional, ndr.] reduction.” The vast freedom in the Lax pair formulation of the self-dual Yang-
Mills equations is due to the arbitrariness of the gauge group. We thank M. Wolf for the information.



It would be impossible to do justice to all the applications of integrability in mathem-
atics and physics; that is why we will just end this introduction with an Ipse dizit.

1.2. Why integrability?
L. Faddeev once wrote [18]

“One can ask, what is good in 1+ 1 models, when our spacetime is 3+ 1 dimensional. There

are several particular answers to this question.

(a) The toy models in 1+ 1 dimension can teach us about the realistic field-theoretical mod-
els in a nonperturbative way. Indeed such phenomena as renormalisation, asymptotic
freedom, dimensional transmutation (i.e. the appearance of mass via the regularisation

parameters) hold in integrable models and can be described exactly.

(b) There are numerous physical applications of the 1 + 1 dimensional models in the con-

densed matter physics.

(¢) The formalism of integrable models showed several times to be useful in the modern
string theory, in which the world-sheet is 2 dimensional anyhow. In particular the

conformal field theory models are special massless limits of integrable models.

(d) The theory of integrable models teaches us about new phenomena, which were not appre-
ciated in the previous developments of Quantum Field Theory, especially in connection

with the mass spectrum.

(e) I cannot help mentioning that working with the integrable models is a delightful pastime.

They proved also to be very successful tool for the educational purposes.

These reasons were sufficient for me to continue to work in this domain for the last 25
years (including 10 years of classical solitonic systems) and teach quite a few followers, often

referred to as Leningrad - St. Petersburg school.”

2. Integrability in Classical Hamiltonian Systems

In this section we review the notion of integrability for a Hamiltonian dynamical system, and how

this can be used to solve the equations of motion.

2.1. Liouville Theorem

Let us take a Hamiltonian dynamical system with a 2d-dimensional phase space M parameterised

by the canonical variables

(quu)7 p=1,..d (2.1)

Let the Hamiltonian function be H(g,,p,), where g,,p, denotes the collection of variables (2.1).

We also require the Poisson brackets to be

{Q;MQV} = {puapu} = 0, {qMapu} = 5uz/a v m, V= 17 ?d (2'2)



One calls the system Liouwville integrable if one can find d independent conserved quantities F,,

w=1,....,d, in involution, namely
{F.,,F,} =0, vV op,v=1,..d. (2.3)

Independence here refers to the linear independence of the set of one-forms dF),. Note that, since
d is the maximal number of such quantities, and since conservation of all the F, means {H, F,} =

0Vup=1,..,d, then one concludes that
H = H(F,), (2.4)
i.e. the Hamiltonian itself is a function of the quantities F),.

Theorem (Liouville). The equations of motion of a Liouville-integrable system can be solved “by

quadratures” *.

Proof. Let us take the canonical one-form

d
a=> p.dg, (2.5)
p=1
and consider the d-dimensional level submanifold

My = {(qu,pu) € MIF, = fu.} (2.6)

for some constants f,, u =1, ...,d. Construct the function

s=[a- /qquudqw (2.7)

0 p=1

where the open (smooth, non self-intersecting) path C' lies entirely in M. In (2.7), one thinks of the
momenta p,, as functions of F),, which are constant on My, and of the coordinates (see comments
in section 2.2).

The function S is well-defined as a function of the upper extremum of integration ¢ (with go
thought as a convenient reference point), because the integral in its definition (2.7) does not depend
on the path. This is a consequence (via Stokes’ theorem) of the fact that dow = 0 on My. We will
now prove that do = 0 on M.

Proof. One has that

d

w=da= Z dp,, N\ dg,, (2.8)
p=1

is the symplectic form on M. Let us denote by X,, the Hamiltonian vector field associated to Fj,,

acting like

d <6FH dg OF, ag> 29)

Xu(g) = {Flﬂg} = Z aqy 8p,, B 3py 8(]1/

=1

4We may consider this as a synonym of “by straightforward integration”.



on any function g on M. Equivalently,
dF, () = w(X,i,") (2.10)
on vectors of the tangent space to M. Then, one has
Xu(F))={F.,F,} =0 Vuv=1..d (2.11)

because of (2.3).
Eq. (2.11) then implies that the X, are tangent to the level manifold M and form a basis for

the tangent space to My, since the F), are all independent. One therefore obtains that
w(Xy, X)) =dF,(X,) = X, (F,) =0, (2.12)
hence w = 0 on Mjy. O

At this point, we simply regard S as a function of F}, and of the upper integration point g,

and conclude that

d d d d
oS
= v dqy —dF, = v dqy L dF,, 2.1
ds ;pdq *;md ;pdq +;¢d (2.13)
where we have defined
08
— 67FN (2.14)
From d?S = 0 we deduce
d
w=Y_dF, A di, (2.15)

pn=1

which shows that the transformation (qu,pu) — (¥, F),) is canonical. Moreover, all the new

momenta F), are constants of motion, hence the time-evolution of the new coordinates is simply

dvy _ OH

pral a—FM = constant in time (2.16)
due to (2.4) and conservation of the F,. The evolution of the new coordinates is therefore lin-
ear in time, as can be obtained by straightforward integration of (2.16) (namely, performing one

quadrature). O

2.2. Action-angle variables

The manifold My defined by the equations F},(q,,p,) = f. typically displays non-trivial cycles,
corresponding to a non-trivial topology, therefore the new coordinates 1, are in principle multi-
valued. For instance, the d-dimensional anisotropic harmonic oscillator admits d conserved quantites
in involution:

1
F,= §(pi +wlql) (2.17)



(where we have set the mass equal to 1 for convenience). One can see from (2.17) that the expression
for p, = p.(qv, F),), which is needed to construct S in (2.7), allows for two independent choices of
sign. The level manifold M is diffeomorphic to a d-dimensional torus®.

We shall put ourselves in the situation where the manifold M has exactly d non-trivial cycles

Cu, #=1,...,d. The action variables are then defined by

1
I, = — 2.1
o (2.18)
depending only on the F,. We can therefore regard S in (2.7) as
S =S, q). (2.19)
If we now define
08
0, = a—IM (2.20)
we have
) 0 4 95 )
de, = f dS = ?{ —dq, = —7{ Q, (2.21)
7{0# L, Je, oL, Jo, ; dq, ° OI, Cu

where we have used that dI, = 0 along the contour since the I, are constant on My, and that

gTi = p,. From the very definition (2.18) we then get

7{ df, = 27 6,,, (2.22)
C

"

displaying how every variable 6,, changes of an amount of 27 along their corresponding cycle C,,.

This shows that the 6, are angle variables parameterising the d-dimensional torus.

Ezxamples

e Let us consider a one-dimensional harmonic oscillator with w = 1, such that the Hamiltonian

reads
1
H= 5(p2 +¢°). (2.23)
There is one conserved quantity H = F' > 0, with level manifold

M; ={(q,p)|¢* + p* = 2F = R* = constant} = {¢ = Rcosa, p= Rsina, R > 0,a € [0,27)}.

We can immediately see that M is a circle of radius R = +/2F in phase space. If we calculate
S from (2.7) we obtain, for ¢y = R,

S = fRz/ da/ sin? @ = F(—a + sina cos ). (2.24)
0

5Notice that this is not a peculiar situation, rather it is quite generic. Under the assumption of com-
pactness and connectedness, it is actually guaranteed by the Arnold-Liouville theorem.



At this point, we need to re-express S as a function of F and ¢, therefore we need to distinguish

between the two branches p > 0 and p < 0, which introduces a multi-valuedness into S:
Qo = arccos %, if a €10,7], o = 2T — arccos %7 if o€ (m 2m). (2.25)

If we define a function

9(q, F) = g\/QF — ¢% — F arccos

q
, e | - VoF,V2F|, 2.26
voaEEl } (226)
then
S=g(q, F), if p>0, S=-=2rF—g(q, F), if p<O. (2.27)

Let us now calculate the new coordinate ¢ = %. We obtain

1) = — arccos if p>0, 1 = —2m + arccos if p<O, (2.28)

q q
V2F' V2F'

from which we conclude
P = —a. (2.29)

We can immediately verify that ¢ depends linearly on time, because we know that the solution

to the equations of motion is
q = V2F cos(t + ¢) (2.30)

for an initial phase ¢. We also find from (2.18)
1

I=—S84-9, = —F, (2.31)
21
hence the angle variable is given by
oS oS
=3[~ B3F " - = a. (2.32)

The phase space is foliated by circles of constant energy, and the action-angle variables are

the polar coordinates (see Figure 1).

The Kepler Problem

The Kepler problem can generally be formulated as the motion of a three-dimensional particle
of mass m in a central potential V(r) = é

The dimension of the phase space is 6, therefore finding 3 conserved charges in involution will
prove the integrability of the problem. The angular momentum is conserved due to rotational
symmetry, hence J?, J, and H form a Poisson-commuting set. They are also independent,
hence the system is integrable.

To exhibit the appropriate change of variables, it is convenient to use polar coordinates

(r,0,¢), where 6 is the polar angle 6 € [0, 7]. The conserved quantities are:

1( 5, g pi 2 2 pi
H=S|pr+ 5+ 55| V0, T =p+-——5 J.=ps 2.33
o\ Pr T2 T gy (r) Pe GinZe Po- (289)
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radial direction H = (p* + ¢*) = const.

Figure 1: Foliation of phase space in circles of constant energy.

These relations can easily be inverted, and then plugged into the expression for the generating
function S (2.7), with sign multi-valuedness. Noticing that, in this particular example, each

polar momentum only depends on its conjugated polar coordinate, one obtains

/dr\/ H-V(r ff+/ o/ J? — Jje /d¢J (2.34)

The new coordinate variables are

08 oS 08
Tsz ’l/)JQ - ﬁa 77[}H - ﬁ

vy, = (2.35)

As a consequence of (2.16), the first two coordinates in (2.35) are simply constant, while the
third one obeys

E—to =y = / dr ! , (2.36)

\/2 (7-vn) -4

which is the standard formula for Keplerian motion. In order to complete the analysis, we

should now define the action-angle variables and determine the frequencies of angular motion
along the torus. Let us remark that this necessitates the explicit use of the torus cycles, as
dictated by (2.18).

Notice that more independent quantities are conserved besides J2, J, and H, namely also

Juz, Jy and the Laplace-Runge-Lenz vector:
A=pxJ+mpBr, (2.37)

where 7 is the unit vector in the radial direction. When the total number of independent
conserved quantities (the d ones which are in involution plus the remaining ones) equals

d+m, with 0 < m < d—1, we will call the system super-integrable. When m = d—1, we call



the system mazimally super-integrable. In the case of the Kepler problem, we have found 8
conserved quantities, namely E, J2, J and A. However, only five are independent, as we have

three relations:
3
=Y "J,  A-J=0, A% =m?B + 2mE J>. (2.38)
pn=1

The Kepler problem is therefore maximally super-integrable, since d = 3.

Let us conclude this section by saying that, locally in phase space, one can reproduce much of
the construction we have outlined for generic Hamiltonian systems, which might raise doubts about
the peculiarity of integrability. The crucial distinction is that, for integrable systems, the procedure
we have described extends globally. In particular, one has a global foliation of phase space by the

M submanifolds, and a nice global geometric structure arising from this analysis.

3. Algebraic Methods

In this section we introduce the concepts of Lax pair, Monodromy and Transfer matrix, and Classical
r-matrix. These quantities prominently feature in the so-called Inverse Scattering Method, which
begins by recasting the Poisson brackets of the dynamical variables of a classically integrable system
in a form which is most suitable for displaying the structure of its symmetries. At the end of this

section we will briefly comment on the issue of (non) ultra-locality of the Lax-pair Poisson brackets.

3.1. Lax pairs

Suppose you can find two matrices L, M such that Hamilton’s equations of motion can be recasted

in the following form:

% = [M, L]. (3.1)

The two matrices L, M are said to form a Laz pair. From (3.1), we can immediately obtain a set

of conserved quantites:

n—1
dO" % n—1-—1
O, = trL", el ;,O tr L' [M, L]L" 7" = 0, V n natural number, (3.2)

by simply opening up the commutator and using the cyclicity of the trace. Of course not all of
these conserved charges are independent. Notice that (3.2) implies that the eigenvalues A, of L are
conserved in time, since O,, = > AL

Let us point out that the Lax pair is not unique®, as there is at least a gauge freedom

dg

L—>ng_17 MHgMg_l—i—dt

9", (33)

5For example, adding constant multiples of the identity to L and M preserves (3.1). There also exist
particular models where one can describe the system using alternative Lax pairs of different ranks (cf. [19],
pages 2-3).



with g an invertible matrix depending on the phase-space variables.

Ezample

e A Lax pair for the harmonic oscillator (with mass m = 1 in appropriate units) can be written

down as follows:

0 v
L= (p wq) =pos + wqoy, M = (w 2) = figag. (3.4)

wq —p $ 0 2

One can immediately check using (3.4) that the only non-zero components of (3.1) - those

along o7 and o3 - are equivalent to Hamilton’s equations of motion.

We will regard L and M as elements of some matrix algebra g, with the matrix entries being
functions on phase space. For example, in the case of the harmonic oscillator (3.4) one can see that
g is the complexification of the su(2) Lie algebra, which is isomorphic to si(2,C).

Even if we assume that we have found a Lax pair, and that we can obtain d independent
conserved quantities, this does not yet guarantee their involutivity. Hence, we have not yet secured

integrability. For that, we need an extra ingredient. We introduce the following notation:
as elements of g ® g. Then, one has the following

Theorem. The eigenvalues of L are in involution iff there exists an element 112 € g ® g, function

of the phase-space variables, such that
{L1, Lo} = [r12, L1] — [r21, L], (3.6)
where ro1 = Il o r19, II being the permutation operator acting on the two copies of g ® g.

The proof can be found in [1].
In order for the Jacobi identity to hold for the Poisson bracket (3.6) one needs to impose the
following condition, defined on the triple tensor product g ® g ® g:

(L1, [r12, 18] + [r12, 723] + [132, 713] + {L2, 13} — {L3,7m12}] +
[La, [13, r21] + [r23, 721]) + [r23,731] + {L3, 21} — {L1,7m23}] +
[Ls, [r31,712]) + [r21,732) + [131,732] + {L1, 732} — {L2,731}] = 0. (3.7

One can see from here that, if 715 is a constant independent of the dynamical variables, and if we

furthermore require that
ri2 = —T21, (3.8)
then we see that a sufficient condition for the Jacobi identity to be satisfied is

[r12,713]) + [r12, 23] + [r13,723] = 0. (3.9)

10



We call such an r a constant classical r-matriz, and (3.9) the classical Yang-Bazter equation
(CYBE).

Notice that another sufficient condition would be to have (3.9), but with a Casimir element
instead of zero on the right hand side. This modified Yang-Baxter equation would lead us to a more

general mathematical setting, which however goes beyond the scope of these lectures.

Ezamples

e The following matrix is a constant solution of the CYBE:
r=e®h—h®e, [h, €] = e. (3.10)
The algebra it is based upon is the triangular Borel subalgebra of sl(2) generated by the

Cartan element h and one of the roots, here denoted by e.

e The matrix r15 for the harmonic oscillator is non-constant (sometimes such r-matrices are

called dynamical as opposed to the constant ones), and it reads

w 0 1 iw
7’12——@ <_1 0) ®L——EO’2®L, (311)

with H = %(p2 + w?¢?) being the energy, and {¢, p} = 1 the canonical Poisson bracket. The
eigenvalues of L in (3.4) are £2H.

The most interesting case for our purposes will be when the Lax pair depends on an additional
complex variable u, called the spectral parameter. This means that in some cases we can find a
family of Lax pairs, parameterised by u, such that the equations of motion are equivalent to the
condition (3.1) for all values of u. We will see that this fact has significant consequences for the

inverse scattering method. Therefore, we are going to put ourselves in this situation from now on.

Ezxample

e A Lax pair for the Kepler problem reads [20]

1 _Xu['r?v%?] XulT 7] _ 0 1
L_2<_ e wam ) M={, ] (3.12)
Xulge"s g XulTs gz7 0

3
1
Xuld, C] = Z M, My7=—-—VV(r) (3.13)

and V(r) = g This Lax pair depends on three complex variables u,, p = 1,2, 3, besides u
which we take as a spectral parameter. Laurent-expanding Eq. (3.1) in u, one recovers the
full set of Newton’s equations m%?z —VV(r) = 7%

11



3.2. Field theories. Monodromy and Transfer matrices.

An important step we need to take is to generalise what we have reviewed so far for classical finite-
dimensional dynamical systems, to the case of classical field theories. We will restrict ourselves to
two-dimensional field theories, meaning one spatial dimension x and one time ¢. This means that we
will now have equations of motion obtained from a classical field theory Lagrangian (Euler-Lagrange
equations).

The notion of integrability we gave earlier, based on the Liouville theorem, is inadequate when
the number of degrees of freedom becomes infinite, as it is the case for field theories. What we will
do is to adopt the idea of a Lax pair, suitably modifying its definition, as a starting point to define
an integrable field theory.

Suppose you can find two (spectral-parameter dependent) matrices L, M such that the Euler-
Lagrange equations of motion can be recasted in the following form:

oL oM
ot Or

We will call such field theories classically integrable.

= [M, L] (3.14)

The condition (3.14) is also the compatibility condition for the following auziliary linear problem:
(0, — L)¥ =0, (0y — M)¥ =0, (3.15)

as can be seen by applying d; to the first equation, 0, to the second equation, subtracting the two
and using (3.15) one more time. We will make use of the auxiliary linear problem later on, when
we will discuss solitons.

The two matrices L, M in (3.14) are also said to form a Laz pair, and one can in principle
obtain a sequence of conserved quantities for the field theory by following a well-defined procedure.
Such a procedure works as follows.

Let us introduce the so-called monodromy matrix

T(u) = Pexp

/ T Lt u)dz] (3.16)

where P denotes a path-ordering with greater x to the left, s_ and s; are two points on the spatial
line, and u is the spectral parameter. This object can be thought of as implelementing a parallel
transport along the segment [s_, s1], in accordance with the fact that the Lax pair can be thought
of as a connection.

If we differentiate 7T'(u) with respect to time, we get

S4
/ dx Pexp

S4
/ dx Pexp

St
/ dz 0, | Pexp

sy
/ L2 t,u)dx’

= M(sy)T —T M(s_), (3.17)

o0; T [8t L(z,t, u)] Pexp

/ L(x',t, u)dw’}

sS4

/ L(x' t,u)dz’
S4 M xT

/ L(x',t,u)dw’] <8d - [LM]) Pexp / L(2,t, u)dm’]
T €z S_

/: L2, t, u)dm’] )

M Pexp

12



where at some stage we have used (3.14). At this point, if we consider pushing s_ and s, towards
the extrema S1 of the spatial domain, respectively, and assume for definiteness this domain to be

the compact segment [0, 271] with periodic boundary conditions on the fields, we obtain
0T = [M(0,t,u),T]. (3.18)
This implies that the trace of T, called the transfer matriz
t(u) = trT'(u), (3.19)

is conserved for all u. By expanding in u, one obtains a family of conserved charges, which are the

coefficients of the expansion. For instance, if t(u) is analytic near the origin, one Taylor-expands

tw) =Y Quu",  0Qn=0,VYn>0. (3.20)

n=0

This forms the starting point for the construction of the integrable structure.

Ezxamples

e The Non-linear Schrédinger (NLS) model” is the classical non-relativistic 1 + 1 dimensional

field theory with Hamiltonian

00 P 2
H= [m dx (‘;ﬁ + /1|¢|4> (3.21)
for a complex field ¥(z) with Poisson brackets
{¢(@), ¥ (y)} = d(z — ), (3.22)

and a real coupling constant x. The name non-linear Schrodinger model comes from the fact

that the equations of motion look like

oy > ,
Grri {H, ¢} = 2 T 25 [1p|=1h, (3.23)

namely they coincide with the Schrodinger equation for a non-linear potential depending on

the square modulus of the wave function itself.

The Lax pair reads
. . * Cu? . 2 oY* . *
p=(TEOm L w (T e ) e
—i ig 5 +iuy —i% —ik[Y|?

depending on a complex spectral parameter u. One can write the monodromy matrix as

a(u) K b* (u*)
T(u) = , 3.25
o= ) 2

"We will follow [9] in this example.
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where a(u) and b(u) admit the following power-series representation:
1+ Z K
n=1
Rt (SP RN (3 w(n1)-~-¢(nn)] :
1+ Z K
n=1

ety (6))  (6) w<m>...w<nn+1>] .

a(u) = et (5+75-) déy...d&, dny...dn,

n/
Sy >Ep >N >En_1...>N1>5_

b(u) = —ie3(5+Hs) dgy...de dn...dips

n/
Sy >Nnt1>En >N >En—1...>N1>5_

Some of the conserved charges one obtains by an appropriate expansion®, and in the limit of

infinite domain s+ — 400, read

n= [ dl. m=j [ dx(ww—w*aw), =1,

2 ) s Ox oz
. 00 83w* 8’(/1* 9
J4 —z[m dx< 53 Y —3 o Y| >, etc. (3.27)

Upon quantisation, the first charge corresponds to the particle number, the second one to

the momentum, the third one to the Hamiltonian.

Action-angle type variables” for the NLS can be obtained in the following fashion. If we
define

_— 2
o) = oy, (3.25)
then this new variable is such that
« . / d .
{o(u), o™ (u)} = id(u — '), o) = —tuep(u). (3.29)

The second equation guarantees that ¢ is the exponential of an angle variable.

In the new variables, the infinite tower of conserved charges - cf. (3.27) - collectively read:

I :/ dpp™ He(p)?,  m=12,.. (3.30)

— 00

8In this example one actually Laurent-expands

loga(u) = ix Z Tmu™ ™. (3.26)

m=1

The justification for this is that a(u) itself commutes with the Hamiltonian, and can be proven to be
an equally good generating function for the conserved charges [21,22]. Moreover, one can show that
{a(u),a(u')} = 0, hence the charges generated by (3.26) are all in involution with each other. This will be
made more systematic in the following sections, where it will be seen to follow from the Sklyanin exchange
relations.

9Let us quote Sklyanin’s original words [9]: “The concept of “action-angle variables” we shall treat here
broadly, calling such any canonical variables in which the Hamiltonian H can be written as a quadratic form
(and the equations of motion, correspondingly, become linear).”

14



e The Sine-Gordon equation for a real scalar field ¢ in 1 4 1 space-time dimensions reads
2

0f0 — 026 = — - sin(280) (3.31)

for m and B two constants. One can recast this equation as a Lax pair condition, with a Lax

pair given by

=i g@tqﬁ mueP? — Le=ifd
mu e~ P — meifd ~ 28,0 ’
M—i 706 —mu e’ — et (3.32)
—mu e~ PP _ %em ,g )

depending on a spectral parameter u.

3.3. Poisson structure and the problem of Non-Ultralocality

In the spirit of (3.6) we now consider the Poisson brackets between two Lax pair elements L, this
time taken at two distinct positions x and y and for different spectral parameters v and u’. Suppose

that the canonical Poisson brackets imposed on the fields have the following consequence for L:
{Li(z,t,u), Loy, t,0)} = [ri2(u— '), Li(z,t,u) + La(y, t,u)] 6(z — ), (3.33)

with similar conventions as in (3.5). Let us also assume that the r-matrix r12(u —u’) does not itself
depend on the fields'®, and satisfies

riz(u —u') = —rai (v —w). (3.34)

Theorem (Sklyanin Exchange Relations). Given (3.33), the Poisson brackets of the mono-

dromy matriz satisfy
{T1(u), Ta(u)} = [ria(u—u), Ty (u)Ta(u')]. (3.35)

From this, one can immediately conclude that the conserved charges generated by the transfer

matrix are all in involution. Indeed, tracing by tr; ® tra both sides of (3.35), one obtains
{t(u),t(u")} =0, (3.36)

where we have used cyclicity of tr; ® tro which is the natural trace operation on g®g. By expanding

(3.36) we obtain the desired involution property of the charges. For analytic functions,

tw) =Y Quu",  {Qn.Qm}=0 Ymmn=>0. (3.37)

n=0

The variables L and T can therefore be thought of as the most convenient variables to display

the integrable structure of the model. It will not come as a surprise then that quantisation best

0Tn principle, we shall not dub this r-matrix as constant any longer, because of the dependence on the
spectral parameter.
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proceeds from the Sklyanin relations, in what constitutes the backbone of the Quantum Inverse
Scattering Method (QISM) [9].

With the assumptions described after (3.33), the Jacobi identity for Sklyanin’s exchange rela-
tions admits again as a sufficient condition the classical Yang-Baxter equation with spectral para-

meter, namely

[r12(u1 — u2), rig(ur — us)] + [ri2(w1 — u2), rog(ue — ug)] + [ri3(u1 — us), ras(ug —ug)] = 0.

(3.38)

The Poisson brackets (3.33) are called ultra-local, because they only display the Dirac delta function
and not its derivatives. Whenever higher derivatives of §(x —y) are present, one speaks of non ultra-
local Poisson structures. In the latter case, one cannot obtain a formula like (3.35), and quantisation

does not proceed along the standard lines of the QISM.
Maillet brackets

There is a situation where a significant amount of progress has been made, despite the presence
of non ultra-locality. This is when the Poisson brackets between the spatial component of the Lax

pair assume the form

{Ll(x,tau)v Lg(y,t,ul)} = 6(33 - y) [r_(u,u/),Ll(x,t, u)] (339)
3 =) [re (), Loyt 0)] + &' (2 =) (r- () = i (uu) )

for a choice of an (r, s)-matrix pair satisfying a mixed Yang-Baxter type equation:

ry =148, r_ =1T-—25, (3.40)

[(r + 8)13(u1, uz), (r — s)i2(ur, uz)] + [(r + 8)23(uz, us), (r + s)12(u1, uz)]

)
+[(r + 8)23(u2, us), (r + s)13(u1, uz)] = 0 (3.41)

(this is again to ensure the Jacobi identity of the brackets). The Poisson brackets for the (classical)
monodromy matrix 77 = Pexp [ L have been derived from (3.39) by careful treatment of the

ambiguity arising from the non ultra-locality [23,24], and read'!

{Tw)@1,1@TW)} = [r(u,u), T(u) @ T(u)] (3.42)
—[1@T ()] s(u,v) [T(u) ®1] + [T(u) @ 1] s(u,w')[1 @ T(u')].

By taking the trace of (3.42), one can still show that an infinite set of classically conserved charges

in involution is generated by trT'(u). The problem is that no quantisation procedure has been so

HTt is important to remark that the brackets (3.42) do not satisfy the Jacobi identity. This violation is
connected to a naive equal-point limiting procedure, occurring when one first evaluates {T'(u)®1, 1T (u')}
for different values of s+ in each of the two factors. A careful treatment of this singularity is provided in [24],
where a way to restore the Jacobi identity is defined via a more elaborated symmetric-limit procedure.
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far fully established for the brackets (3.42). The quantum S-matrix can nevertheless be fixed by

symmetries in most of the interesting cases.

Ezample

e The Principal Chiral Model provides a standard example of Maillet structure [23,25]. This

is the theory of an element g of a compact group G, with Lagrangian

1 . . 1
£=—%tr1u“, Ju = (0.9)9

admitting (left,right) global symmetry g — (eif g, ge'f ) In Minkowski signature, 2° = t,

z! =z, and conservation of j reads 9,,j* = 9yjo — 11 = 0. The constant v is the coupling

of the theory. Both f and the (left,right) currents
Jﬁ = Ju = (Ou )9t jf =g (On9)
belong to the Lie algebra of G. The currents are flat (cf. Maurer-Cartan one-forms), i.e.
O = Oy =3 301 =0, Ousi = iy = i 3,71 = 0. (3.43)
The Lax pair reads

ujo + J1 uji + Jo

L= 1— w2’ M= 1 _ 2 (3.44)
The (r, s) pair reads
r(u,u’) = % C(UZ t iEu’) Cs s(u,u') = % WQ@, (3.45)
with
w2
(W) =157 Co= azbj Kab ta @ by, (3.46)

in terms of the Lie algebra generators t*. Indices in (3.46) are saturated with the Killing

form k4 (see footnote 14 in the following).

We would like to conclude this section by mentioning that the Lax-pair formalism allows to
derive a set of relations, called finite-gap equations, which are the first step to a semi-classical
analysis of the spectrum of the integrable system. This is treated in detail in Fedor Levkovich-
Maslyuk’s lectures at this school [26], where the finite-gap equations are derived by taking a semi-

classical limit of the quantum Bethe ansatz equations.

4. Classical r-matrices

In this section, we discuss the properties of classical r-matrices, most notably their analytic structure
and their relation to infinite-dimensional algebras. The highlights of this section will be the famous

Belavin-Drinfeld theorems.
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4.1. Belavin-Drinfeld theorems

Mathematicians have studied classical r-matrices and have classified them under specific assump-

tions. We begin by presenting the most important theorems in this area [27-29].

Theorem (Belavin Drinfeld I). Let g be a finite-dimensional simple'? Lie algebra, and r =
r(uy —u2) € g® g a solution of the (spectral-parameter dependent) classical Yang-Baxter equation

(3.38). Furthermore, assume one of the following three equivalent conditions to hold:

e (i) r has at least one pole in the complex plane u = u; — ug, and there is no Lie subalgebra
g C g suchthatr € g’ ®¢g' for any u,

o (ii) r(u) has a simple pole at the origin, with residue proportional to ) t, ® tq, with t, a

basis in g orthonormal with respect to a chosen nondegenerate invariant bilinear form'3,

o (iii) the determinant of the matriz rqp(u) obtained from r(u) =Y, rap(u)te @ t, does not

vanish identically.

Under these assumptions, ria(u) = —ra1(—u) where ro1(u) =1II o rig(u) = >, Tap(u) ty @ tq, and
r(u) can be extended meromorphically to the entire u-plane. All the poles of r(u) are simple, and
they form a lattice T'. One has three possible equivalence classes of solutions: “elliptic” - when T is
a two-dimensional lattice -, “trigonometric” - when I' is a one-dimensional array -, or “rational”-

when T' = {0}-, respectively.

The assumption of difference-form is not too restrictive, thanks to the following theorem by the

same authors [29]:

Theorem (Belavin Drinfeld IT). Assume the hypothesis of Belavin-Drinfeld I theorem but r =
r(u1,u2) not to be of difference form, with the classical Yang-Baxter equation being the natural

generalisation of (3.38):
(112 (w1, u2), m13 (w1, us)] + [riz(u1, u2), rog(us, us)] + [ris(u, us), rag(us, us)] = 0. (4.1)

Now the three statements (i), (ii) and (iii) are not any longer immediately equivalent, and we will
only retain (ii). Assume the dual Cozeter number'® of g to be non vanishing. Then, there exists a

transformation which reduces r to a difference form.

Proof. Without loss of generality, we can assume that the r-matrix will behave as

r e~ Zata®ta

4.2
P + g(u1, uz) (42)

12A Lie algebra is simple when it has no non-trivial ideals, or, equivalently, its only ideals are {0} and
the algebra itself. An ideal is a subalgebra such that the commutator of the whole algebra with the ideal is
contained in the ideal.

13Such a residue can be identified with the quadratic Casimir Cg in g ® g.

M“The dual Coxeter number ¢ is defined as > ap fabe faba = ¢20ca, and it is related to trace of the
quadratic Casimir in the adjoint representation, i.e. ) [ta,[ta,2]] = c2x, V& € g. The Killing form is
nothing else but keqa = Y, fabe fabd = €2 0ca-

18



near the origin. If it does not, then

7~ f(U1) Za t‘l @ ta

Uy — Uz

+ g(u1, u2), (4.3)

and the change of variables

will make the residue equal to 1. In fact, near v; = vo, one has

g(ul) ~ 5(”1) 1 (45)

~

Uy — U2 U(’UQ) -+ ul(’l}g)(’l}l — 7)2) — U(UQ) V1 — V2

due to (4.4). The function g can be taken to be holomorphic in a sufficiently small neighbourhood
of the origin.

Expanding (4.1) near the point us = usz, we get

[r12(u, u2), m13(ur, u)] + [riz(ur, u2) + r13(ur, uz), gas(ua, uz)] +

te® 1,
S ran(ur, un)te ® Alty), 16 2l & e
ab U — U3

+ au27’12(U1,U2), 1® Zta (24 ta =0

a

where A(t,) = t, ® 1 + 1 ® t, coincides with the trivial coproduct on g, when g is regarded as a
bialgebra [30]. However, the third term cancels out because ) t, ® t, is the quadratic Casimir of
g ® g, hence [A(ty), ), ta ® ta] = 0.

Now we apply the commutator map x ® y — [z, y] to the spaces 2 and 3 in the above equation,
and use the fact that the dual Coxeter number is non-zero (and equal to 1 if we use appropriate

conventions). After using the Jacobi identity, we get

Z Tab(ul’ UQ)TCd(ulv u2)[tm tc] & [tba td} + [T(ula u2)a 1® h(u2)] + au2r(u17 UQ) =0, (46)
abed

where h(u) = gap(u, u)[ta, to)-

We can repeat the same process on the variables u; and uo, and the spaces 1 and 2. We obtain

Z Tap (U1, u3)Teq(ut, us)[ta, te] ® [to, tal + [h(ur) @ 1,7(ur, uz)] — Oy, 7(u1,us) = 0. (4.7)
abed
In total,
Ouy (U1, u2) + Ou,r(ur, u2) = [h(ur1) ® 1+ 1 ® h(ug), r(u1, ug)]. (4.8)

Define an invertible map ¢ (u) acting on g, such that

Lyl = [hw, vl vees (49)

and set
Plur, ug) = [ ug) @ Y~ Hug)|r(us, ug). (4.10)
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Since

2070 = =) (oot ) ) (1.11)

(4.8) becomes
Ou, T(u1, ug) + Oy, m(u1, ug) =0, (4.12)
which shows that 7 is of difference form. O

The importance of the two theorems above resides not only in their powerful classification of
the possible classical integrable structures associated to simple Lie algebras, but also in how this
structure turns out to determine quite uniquely the possible quantisations one can extract. This
poses strong constraints on the possible types of infinite-dimensional quantum groups, thereby
restricting the classes of quantum integrable systems one can ultimately realise.

Mathematically, the quantisation procedure involves the concept of Lie bialgebras and the so-
called Manin triples (see for example [31] and references therein). The term quantisation incorpor-
ates the meaning of completing the classical algebraic structure to a quantum group, or, equivalently,

obtaining from a classical r-matrix a solution to the quantum Yang-Baxter Equation
Ri2 Ri3 Ro3 = Raz Ri3 Ria, Rij~1®1 +ihr; + O(R?). (4.13)

The quantisation of the Sklyanin exchange relations is attained by simply “completing the h series”

into the famous RT'T relations, which will be discussed at length during this school:
Ti(wW)To(W)R(u — ') = R(u—u)To(w)Ti(u),  T(u) =T(u)+ O(h) (4.14)

where the quantum monodromy T is now understood as the normal-ordering of the classical product
integral expression. We can see that (4.14) tends to (3.35) for A — 0.

The associated quantum groups emerging from this quantisation process are then classified
as elliptic quantum groups (dim(T) = 2), quantum affine algebras (dim(I') = 1), and Yangians
(T = {0}, respectively)'®. We refer to the lectures by F. Loebbert at this school [32] for more
details on this.

This is then indeed a mathematical framework for transitioning from the classical to the

quantum regime of the physics:

{4,B} = lim [A7B].

4.1
=0 1h (4.15)

One could say that for integrable systems one has an explicit exact formula for the r.h.s. of (4.15)
as a function of h. In a sense, the Sklyanin exchange relations are the best starting point wherefrom

to quantise the theory, in a way that keeps the integrable structure manifest at every step.

15 A theorem [30] says that, if r® =0, then R = e" solves the Yang-Baxter equation. In general, R is a
very complicated expression, which is the correspondent of the highly non-trivial procedure of quantising a
classical Lie bialgebra [30, 31].
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4.2. Analytic properties

In this section, we discuss the analytic properties of the classical r-matrix as a function of the

complex spectral parameters.

Ezample

e A convenient way of displaying the connection between the classical r-matrix and the associ-

ated quantum group is the case of Yangians. Let us consider the so-called Yang’s r-matriz:

C
r=K—a, (4.16)
U2 — U1
This turns out to be the prototypical rational solution of the CYBE. Indeed, by definition of
the Casimir Cg, one has [Cg,t* ® 1 + 1 ® t*] = 0 Va, and one can easily prove that (4.16)

solves the CYBE.

This classical r-matrix is the one relevant for the non-linear Schrédinger model of example
(3.21), as it was proven by Sklyanin [9]. Using this fundamental result, it is then an easy
exercise to show that, combining (4.16) and (3.35) with (3.25), one obtains in particular that
{a(u),a(u’)} = 0, which was used in footnote 8.

As a matter of fact, upon quantisation the NLS model is found to conserve the particle
number, and in each sector of the Fock space with fixed number of particles it reduces to
a quantum mechanical problem with mutual delta-function interactions [9, 33]. This was
exactly the context where Yang was working [34] when he came across the solution (4.16).
In [9], Sklyanin went on to demonstrate that normal-ordering effects quantise the classical
r-matrix (4.16) into the canonical Yangian R-matrix (in suitable units):
R=101+ 2 ¢,
Ug — Uy

solution of the quantum Yang-Baxter equation.

One can expand the classical r-matrix (4.16) as follows:

C
%:u2_®u1 Z ta®ta Zzt U1®tu2 :Zzta,n(@ta,fnfla

—u
U2 1 @ n>0 a n>0

where we have assumed 1| < 1 for definiteness. Now we are capable of attributing the
dependence on the spectral parameter u; (respectively, us) to generators in the first (re-
spectively, second) space. This allows us to interpret the formula (4.16) as the representation
of an r-matrix, which is an abstract object living in the tensor product A, [g] ® A.,[g] of

two copies of a larger algebra A, [g] constructed out of g. The assignement
tan = u"tg (4.17)
in (4.17) produces

amatbn Z,fabc c,m~+n (418)
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in terms of the structure constants fup.. The relations (4.18) then identify in this case the

algebra A, [g] as the loop algebra'® L, [g] associated to g.

One can then make sense of the operation of abstracting the relations (4.18) away from the

specific representation (4.17) they are originally seen to emerge from. Using solely these

commutation relations, one can then verify that the abstract formal expression'”

r=>"3 tan ®@ta-n-1 (4.21)

a nz=0

provides a consistent classical r-matrix independently of specific representations of (4.18). In
turn, the universal enveloping algebra U (L, [g]) of the loop algebra L,[g] is nothing else but
the classical limit of the Yangian Y(g):

Y(g) = U(Lufg]) as h—0. (4.22)

Theorem. The spans of the generators appearing separately on each factor of r must form two Lie

subalgebras of g.

Proof. By writing r =" _, rap(u) 2% ® 2, with the 2’s being a subset of the t’s, one has that near
the pole at u; = us the CYBE reduces to

CablU

Z % Tcd(ul - ’LL3) ([zaa Zc] R2p ®2d+ 24 ® [Zba Zc] & Zd) = Oa
1 — U2

abed

with some function c,p(u1). This implies
[zaa Zc] = Z facdzd
d

for a subset of the structure constants fqeq. In [27], the Jacobi identity is shown, which proves that

the two spans discussed above form Lie subalgebras of g. O

16 A generalisation of the loop algebra is the so-called affine Kac-Moody algebra §, associated to a finite-
dimensional Lie algebra g. To obtain such a generalisation, one allows for a non-trivial central extension
c. If we denote the generators of the affine Kac-Moody algebra as sq.n = sq ® v" in terms of a formal
parameter v, we can then write the defining relations of § as

[sa @ V", 85 @ V™) = [Sq, 5] @ T 4 (Say Sb) M On,—m C, (4.19)

with (,) the scalar product induced on g by the Killing form. One usually adjoins a derivation d to the
algebra:

[d, 50 ® V"] = ns, @0, dE’U%7 (4.20)

in order to remove a root-degeneracy (see e.g. [35]).

There are subtleties one needs to be careful about, regarding the convergence of formal series such as
(4.21). An appropriate setting where to discuss such issues is typically provided by the so-called p-adic
topology and Poincaré-Birkhoff- Witt bases.
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These two span subalgebras together with g form the so-called Manin triple. Characterisation
of such a triple is an essential pre-requisite to identify the actual algebra, the quantum group is
going to be built upon. In fact, suppose we had started with an r-matrix, solution of the classical
Yang-Baxter equation, such that, however, none of the three requirements () — (i#¢) in the Belavin-
Drinfeld I theorem held. In particular, this could be because we have identified that r € g ® g, but
some of the basis element ¢, never actually appear in r, causing the determinant det r, to vanish by
a row of zeroes. The theorem we have just proven reassures us that we can always find a subalgebra

g’ of g such that r € g’ ® g’. For this restriction, r has now a chance of being non-degenerate.

Let us finally mention that classical r-matrices are core objects in the theory of quantum groups
and deformation quantisation, and play a special role in the study of the so-called Drinfeld double
(cf. F. Loebbert’s lectures at this school [32]).

5. Solitons

In this section, we discuss the soliton solutions of integrable classical field theories. By way of
introduction, let us report what is probably the archetype of solitons, contained in John Scott

Russell’s famous report of an event occurred at the Union Canal, Scotland, in 1834 [36]:

“I was observing the motion of a boat which was rapidly drawn along a narrow channel by a pair
of horses, when the boat suddenly stopped - not so the mass of water in the channel which it had put
in motion; it accumulated round the prow of the vessel in a state of violent agitation, then suddenly

leaving it behind, rolled forward with great velocity, assuming the form of a large solitary elevation,

a rounded, smooth and well-defined heap of water, which continued its course along the channel

apparently without change of form or diminution of speed”.

In the language of integrable systems, we can model this situation using the famous Korteweg

- de Vries (KdV) equation [37,38] for a wave profile ¢ in shallow water'®:
0rp + 03¢ — 6¢00,0 = 0. (5.1)

The KdV equation (5.1) admits, as a particular solution'?, a travelling soliton parameterised by

two arbitrary real constants xg and v:

¢ = — 2 sech? lﬁ (x —vt+xz0)|. (5.2)

2 2

The Lax pair for the KdV equation is given by

L:(O ﬁ, M:< ~¢s %w> (5.3)
u—¢ 0 4U2_2u¢ +¢xx_2¢2 o

18This form of the equation gets mapped onto the one presented in S. Negro’s lectures at this school,

upon the identifications ¢ = —U,t = —t3,z = w, and compactification of = to [0, 27].
9 A more general solution is obtained in terms of the Jacobi elliptic cosine function ‘cn’, hence the name
cnoidal wave.
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o s <— V2

— V2 v —>

Figure 2: Scattering of solitons keeping their shapes and velocities.

The extra conservation laws of the integrable hierarchy prevent the waves from loosing their profiles
throughout the time evolution. We will now discuss a very general method for solving integrable

equations and find soliton solutions in a wide variety of cases.

5.1. The classical inverse scattering method

Let us show how Gardner, Green, Kruskal and Miura solved the KdV equation, with a method
which since became a standard procedure for integrable partial differential equations [6]. As we
pointed out in the Introduction, this method, dubbed of the (classical) inverse scattering, was
afterwards adapted to quantum theories by the Leningrad school, and still to this day represents a
paradigmatic approach to the quantisation of integrable systems. In the following section, we will

show a more complicated application of the inverse scattering method to the Sine-Gordon equation.

The main feature that emerged from early numerical calculations performed on the KdV equa-
tion was that there are solutions describing multiple propagating profiles, which nevertheless scatter
off each other preserving their individual shapes through the process (see Figure 2). This is quite
surprising for a non-linear equation as the one at hand, and it is due to a perfect competition
between the non-linearity ¢ d,¢ (trying to concentrate the profile) and the dispersion 92¢ (trying
to spread the profile). It also shows, in a way, how integrability is capable of restoring some features,
which might be thought as rather pertaining to a linear behaviour, into a highly non-linear system.

Gardner et al. in op. cit. consider the auxiliary Schrodinger problem
Gy = (¢> - U(t))¢, (5.4)
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with ¢ satisfying (5.1). Eq. (5.4) is equivalent to the first equation of our auxiliary linear problem
(3.15), namely 9,V = LU, after one takes a further 0, on the latter, and then projects it onto the
first vector component. Solving for ¢ in (5.4) for ¢ not identically zero, and substituting back into

(5.1) gives

One can see that, if ¢ vanishes sufficiently fast at || — oo, integrating the first equation in
(5.5) on the whole real line implies d;u = 0, hence u is a constant spectral parameter. This means
that we are effectively solving for the normalisable part of the spectral problem 92 ¢ = (¢ — u).

It also means that we are left with solving

['(/) Qa: - '(/}wQ]w = 0; ie. waw = Q"/’wwv (56)

from (5.5). It is then straightforward to check that, differentiating the equation

Q) =Cyv+Do)w [ ’ Zﬁ (5.7)

twice w.r.t. z, for two arbitrary integration constants C(¢) and D(t), and re-using (5.7) once, one
obtains (5.6).

At this point, we assume that ¢ vanishes at spatial infinity for any given time.

e The normalisable ¥ modes, for C = D = 0, satisfy
0=Q(z,t) = 0 + 02¢ — 3ud at |z] = oo (5.8)

which is solved by the bound states

+4k3 tFk,

Vp — Cn € at x — oo, kn =V —Up, u, <0, (5.9)

expected to form the discrete part of the auxiliary spectral problem.

e We can extend our problem to the non-normalisable modes with a wave-like behaviour at
spatial infinity, choosing u to be a constant. For this, we can first go back to (5.4) and deduce

for instance, for k2 = u > 0,

v —> ek 4 pethT T — 00,

ikx

Y —>ae "7 T — —00. (5.10)

Solutions which are asymptotically plane waves at x — +oo are called Jost solutions. Plug-
ging this into (5.7), one finds as a solution D = 0, C = 4ik®, and scattering data a,b

determined as
a(k,t) = a(k,0),  b(k,t) = b(k,0) e¥*°t. (5.11)

This is called the direct scattering problem.
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Combining together all this information turns out to be sufficient to reconstruct ¢. This means
that we can reconstruct the potential ¢ in the auxiliary Schrodinger problem (5.4) from the scat-
tering data. This is the inverse scattering problem. In fact, if K(z,y), for y > z, is a solution of
the Gel’fand-Levitan-Marchenko equation [39,40]

Kay)+ Bla+y)+ [ d2K(e,2)Bly+2) =0 (5.12)
where
_ 1 > ik 2 —8k3t ky
B(z) = g/_mdkb(k')e’ x—i—zn:cne nt ghn® (5.13)

in terms of the coefficients b in (5.11) and ¢y, ky, in (5.9), then one has

¢= Q%K(ﬂc,w} (5.14)

The theory behind the Gel’fand-Levitan-Marchenko equation is deeply rooted in the technology
which allows one to reconstruct the potential of a given Schrodinger problem from the knowledge
of its reflection and transmission coefficients, which both feature in (5.13). The classical inverse
scattering method is also regarded as a generalisation of the Fourier transform to non-linear prob-
lems. Let us sketch here an argument®” that motivates formulae (5.12)-(5.14) in a simplified case.

Consider the spectral problem

0? o

where V(x) has a compact support [—R, R] in the spatial direction . This means that, in the

regions * < —R and x > R, w satisfies the free wave equation, hence we can write
w=f_(x—1t)+g_(z+1), r < —R,
w=fy(x—1t)+gy(x+1), x> R. (5.16)
Consider now two different solutions, characterised by the following asymptotics:
o (Case 1
w =4z —t), t << —R,
w=g_(x+1t)+ fr(x—1), t>> R. (5.17)
For finite speed of propagation, this solution vanishes for « > ¢.

o Case 2

w=0(z—1t)+g+(z+1), t << —R,
w= fi(x—1), t>> R. (5.18)

20 A rigorous derivation of the Gel’fand-Levitan-Marchenko equation is beyond the scope of these lectures.
For a wider context, the interested reader can for instance consult [41,42]. Here, we found it convenient to
follow a discussion by Terry Tao [43].
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In both cases (which, in a sense, can be thought of as being dual to each other), the functions fi
and g+ appearing will be pictured as some sufficiently localised profiles. Let us give a special name

to the function g_, i.e.
g—(z) = B(z) “scattering data”. (5.19)
Let us focus on case 2, and make the ansatz
w=0(x—1t)+ K(z,t)0(x —t) (5.20)

for the full solution to (5.15), with © the Heaviside step function. Take K to vanish for x < —R.
Plugging this ansatz back into (5.15) and collecting the terms proportional to §(z — t), one gets
d
V(z) =2—K(z,z). 5.21
() = 2.0 K (2,2 (5.21)
One then notices that, if w(x,t) solves (5.15), so does w(x, —t + s) for an arbitrary constant shift
s. Therefore, also
o0
w(z,t) + / ds B(s) w(z,—t + s) (5.22)
— o0
does. If we use the ansatz (5.20), this means that

0z —1t)+ K(z,t)O(x —t) + Bz + 1) + /CE ds B(s +t) K(z,s) (5.23)

solves (5.15), and it coincides with §(x — t) + B(x + t) when © < —R. Therefore, this solution

corresponds to case 1 above, hence it must vanish for « > ¢. This in turn implies

K(x,t)—i—B(x—i—t)-i—/w ds B(s+t) K(z,s) =0. (5.24)

—o0
The form we use in the case of the KdV equation basically involves the Fourier transform of the
procedure we have just sketched.

As an example, the single-soliton solution of the KdV equation is obtained from the above
procedure in the case when b = 0, and there is only one discrete eigenvalue u. In this situation, one

simply has
B(z) = yer®, y =28 (5.25)
and it is therefore convenient to make an ansatz for K of the form
K(x,y) = K(x)ev. (5.26)

Eq. (5.12) then becomes easy to solve after a simple integration for k& > 0:

2v k ek®

K(z)= TR 1ok

(5.27)

We immediately get from (5.14) that
16 ¢2 I3 o2k (~ak2t+a)

é=— :
[c2 621@(741@2”1) N 2k]2

(5.28)
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For the choice ¢ = 2k, we obtain
6 = —2k%sech? [k( — 4k +x)|, (5.29)

which coincides with (5.2) for v = 4k2. For further detail and a complete exposition, we recommend
the lecture notes [44].

5.2. The Sine-Gordon equation and Jost solutions

We will now apply the inverse scattering method to the more complicated example of the Sine-
Gordon theory (3.31). In this section, we will follow [1].
Let us look for solutions of (3.31) behaving at infinity like

¢—0 as T — —o0, ¢ — an as x — +o0. (5.30)

B

The quantity ¢ is called the topological charge. We will restrict to the case where ¢ is an integer,

which is compatible with the equation. It can be calculated as

_ B[ 09 B
=" ) drgi=- [6(00) = 6(—o0)]. (5.31)
If ¢ = 1 we speak of a soliton (or kink), while if ¢ = —1 we speak of an anti-soliton (or anti-kink).

Direct Problem

We begin by focusing on what is called the direct scattering problem, namely, the first equation in
(3.15):

0,V = LU, U= (1“) . (5.32)
o

At infinity, the conditions (5.30) imply for (5.32)
0,V — tko U as T — —o0, 0,V — ke’ o U as r — +00, (5.33)
where o7 is a Pauli matrix, and
k=mu — —. (5.34)
u

This means that the solution will behave as plane waves at infinity. Let us define

U= @1) = (fi%) . (5.35)
P2 iy

We will make the specific choice of two Jost solutions, determined by the following asymptotic

behaviours;

1 ) 1 ) 1 )
U, = a <1> ek _p ( 1) e~k r — —00, Uy — ( » > etk T — 400,
p— 62 T
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1 —ikx * 1 ikx eiqﬂ- —ikx
Uy — ) e T — —00, Uy — —b i e +a ) e T — 400,
_ e _

la(u)* + [b(w)]? = 1. (5.36)

The last condition follows from considering that various Wronskians constructed with ¥; and ¥;
are independent of x.

The two solutions ¥; and Uy are independent as long as the Wronskian det |y 5| does not
vanish, namely, as long as the Jost function a(u) does not have zeroes. Let us first put ourselves
away from any zero of a(u), and list a few properties of the two independent Jost solutions (without

proof).

e The Jost solutions W, and Wy, when regarded as functions of u, are analytic in the upper
half plane Im(u) > 0.

e For a fixed x, the Jost solutions have the following asymptotics in u:

8

; 98
(2 —15
_an [ €2 , an e
Uy — e 'z < -¢/3> et lu| — oo, Uy, — e'2 ( s )e“m |u| — 0,

e ‘2

ei%ﬁ . e_i% .
Uy — s | e |u| = oo, Uy — s | e lu] — 0.
—e iy —et T
e The Jost function a(u) is analytic in the upper half plane Im(u) > 0 and satisfies
a(u) — e V% |u| — oo, alu) — €% lu| — 0,

a(—u) = e 7" a*(u) for real u. (5.37)

The two functions a(u) and b(u), the zeroes u,, of a(u) and the proportionality constants ¢,

between ¥, and W, at the values w,, where the Jost solutions become dependent
\IIQ(ma un) = Cn qll(-’”a un)a

altogether form the set of scattering data.
The time evolution of the scattering data can now be explicitly computed by substitution into

the second equation in (3.15). One gets

a(u,t) = a(u,0), b(u,t) = eQim(u+%)t b(u,0), hence

un(®) = un(0), () = e~ 2m(mt) e (). (5.38)

Inverse Problem

We now proceed to reconstruct the field ¢ from the solutions to the auxiliary linear problem. For

this, we start by noticing that for real u the Jost solutions satisfy

1 g, = ~ =
—— €23V, = v A 5.39
i o e = g By il (5:39)
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where

£(u) = — ’ (I}l _ eiqw;wgg,%’ (1‘,2 _ e_i%”sllll. (5.40)

This can be obtained by using that, if ¥ (z,u) is a solution to the direct problem (5.32), so is
o3 (x, —u). One can then compare the asymptotic behaviours of ¥;(x,u) and o3W¥;(z, —u), where
W, are the two Jost solutions.

One can also prove that the (hatted) Jost solutions admit the following Fourier representation:

N _ 1 o0 1 .
U, = etk® < ) > +/ dy (Ul(x,y) + wl(x,y)) ety
erar x u

~ . 1 z 1 .
Uy, = ¢~k (_1> +/ dy (vg(x,y) + uwg(x,y)> e~ kY. (5.41)

— 00

for v;(z,y) and w;(x,y) two-component vectors with sufficiently regular behaviour.

The importance of the kernels v; and w; is that the knowledge of their explicit form allows to
reconstruct the matrix L and therefore provides a solution for the original field ¢. One in fact has
that, plugging these expansions back into the direct problem,

4Ty o(z, )

(2iBo() _ Mt e

5.42
im 4w 1(z, x) ( )

where ¢ is defined in (5.30) and w; ; is the component j of the vector w;.
The final step of the process involves again the Gel'fand-Levitan-Marchenko equation for the

kernels v; and w; appearing in the Fourier decomposition (5.41).

Theorem (Gel’fand-Levitan-Marchenko). The kernels vy, wy in (5.41) satisfy the following

integral equations:
_ 1 >
ou(a,y) = fole +y) (em> + / dz (fo<z +y) (e, ) + fa(z +y)w1<x,z>),

1(@,y) = fa(0+) (1) [T (Fatr pua) + Lt )

with the scattering data (5.38) entering these equations as

file) =~ [ duw € ) +m Y e Ty, my, =

omi (5.43)

The Gel’fand-Levitan-Marchenko equations greatly simplify under the assumption that b = 0,
corresponding to absence of reflection in the auxiliary linear problem. The integral equation for
v1 reduces to a linear system. The simplest possible assumption is that there is only one purely
imaginary zero u; = ipy of a(u), with u; < 0, which collapses the entire system to one linear
equation with straightforward solution. Plugging this solution into (5.42) returns the one-soliton

solution

PP — 1+X X = ,L672m(/—‘1+ﬁ)(17m0)+2m(ﬂ17ﬁ)t

) o 14w
1_Xx’ ) =TT (5.44)
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pi-1
pi+1
charge ¢ in (5.30) equals 1 for this solution. Upon quantisation, solitons and anti-solitons become

which is a profile propagating with velocity v =

€ [-1,1]. Tt is easy to see that the topological

the elementary particles in quantum Sine-Gordon theory.
The other famous and slightly more complicated solution one obtains, is one that is normally
quantised into a bound state of a soliton and an anti-soliton, and it accordingly has zero topological

charge. This solution is called a breather. The profile for a (non-translating) breather is given by

V1 — w? cos(dmwt)
w cosh (4mv/1 — w?z)’

¢ = 5 arctan w € [0,1]. (5.45)

6. Conclusions

We hope that these lectures have stimulated the curiosity of the many young researchers present at
this school to delve into the problematics of integrable systems, and have prepared the ground for
the following lectures, where, in particular, the quantum version of integrability will be presented.

This field is constantly growing, attracting representatives of different communities with in-
terests ranging from mathematics to mathematical physics and high-energy physics. We are sure
that the new generation of physicists and mathematicians present here in Durham will accomplish

great progress in all these avenues of investigation.
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Abstract

In these introductory lectures we discuss the topic of Yangian symmetry
from various perspectives. Forming the classical counterpart of the Yangian
and an extension of ordinary Noether symmetries, first the concept of
nonlocal charges in classical, two-dimensional field theory is reviewed. We
then define the Yangian algebra following Drinfel’d’s original motivation
to construct solutions to the quantum Yang—Baxter equation. Different
realizations of the Yangian and its mathematical role as a Hopf algebra and
quantum group are discussed. We demonstrate how the Yangian algebra
is implemented in quantum, two-dimensional field theories and how its
generators are renormalized. Implications of Yangian symmetry on the two-
dimensional scattering matrix are investigated. We furthermore consider
the important case of discrete Yangian symmetry realized on integrable spin
chains. Finally we give a brief introduction to Yangian symmetry in planar,
four-dimensional super Yang—Mills theory and indicate its impact on the
dilatation operator and tree-level scattering amplitudes. These lectures are
illustrated by several examples, in particular the two-dimensional chiral
Gross—Neveu model, the Heisenberg spin chain and N' = 4 superconformal
Yang—Mills theory in four dimensions. This review arose from lectures given
at the Young Researchers Integrability School at Durham University (UK).
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1 Introduction

“I got really fascinated by these (1+1)-dimensional models that are solved by the Bethe
ansatz and how mysteriously they jump out at you and work and you don’t know
why. I am trying to understand all this better.” R. Feynman 1988 [1]

The possibility to grasp physical models, to efficiently compute observables and to explain
mysterious simplifications in a given theory is largely owed to the realization of symmetries. In
quantum field theories these range from discrete examples like parity, over spacetime Poincaré
or super-symmetry to global and local internal symmetries. In the most extreme case, a theory
has as many independent symmetries as it has degrees of freedom (possibly infinitely many).
Roughly speaking, this is the defintion of an integrable model. The concept of integrability
has many faces and can be realized or formulated in a variety of different and often equivalent
ways. As we will see below, this symmetry appears in certain two- and higher-dimensional
field theories or in quantum mechanical models like spin chains. While integrability in classical
theories is rather well understood, quantum integrability still asks for a universal definition [2].
The nature of what we call a (quantum) integrable system can be identified by unveiling typical
mathematical structures which have been subject to active research for many decades.

One realization of integrability is the Yangian symmetry, representing a generalization of
Lie algebra symmetries in physics. This Hopf algebra was introduced by Vladimir Drinfel’d in
order to construct solutions to the famous quantum Yang—Baxter equation [3-6]. Moreover, the
Yangian algebra forms part of the familiy of quantum groups introduced by Drinfel’d and Michio
Jimbo [3,7,8]. These provide the mathematical framework underlying the quantum inverse
scattering method and the algebraic Bethe ansatz, which were developed by the Leningrad
school around Ludwig Faddeev, see e.g. [9]. Hence, the Yangian represents a central concept
within the framework of physical integrable models and their mathematical underpinnings.

The most common occurrence of Yangian symmetry in physics is the case of two-dimensional
quantum field theories or discrete spin chain models. Here a global (internal) Lie algebra
symmetry g is typically enhanced to a Yangian algebra Y[g]. This Yangian combined with
the Poincaré symmetry yields constraints on physical observables. These constraints following
from the underlying Hopf algebra structure often allow to boostrap a quantity of interest, first
of all the scattering matrix. One of the most prominent statements about symmetries of the
S-marix is the famous four-dimensional Coleman-Mandula theorem [10]. It states that the
spacetime and internal symmetries of the S-matrix may only be combined via the trivial direct
product. Hence it is by no means obvious that an internal and a spacetime symmetry can
be combined in a nontrivial way. In certain 1+1 dimensional field theories, however, it was
shown that the Lorentz boost of the Poincaré algebra develops a nontrivial commutator with
the internal Yangian generators. Thus, the internal and spacetime symmetry are coupled to
each other [11,12]. This interconnection implies stronger constraints on observables than a
direct product symmetry, since the boost maps different representations of the Yangian to each
other. That this nontrivial relation of the Yangian and the spacetime symmetry is possible
can be attributed to the fact that the Yangian generators do not act on multi-particle states
via a trivial tensor product generalization of their action on single particle states; they have
a non-trivial coproduct, which violates the assumptions of the Coleman—Mandula theorem.
Interestingly, the internal Yangian and the Poincaré algebra are linked in such a way that the
Lorentz boost realizes Drinfel’d’s automorphism of the Yangian algebra, which was originally
designed to switch on the spectral parameter dependence of the quantum R-matrix.



The physical implementation of the abstract mathematical Yangian Hopf algebra can in fact
be observed in the case of several interesting examples. A very intriguing physical system and a
two-dimensional prime example in these lectures is the so-called chiral Gross—Neveu model [13].
This theory of interacting Dirac fermions ¢ provides a toy model for quantum chromodynamics
and features a plethora of realistic properties whose implementation by a simple Lagrangian is
remarkable. In particular, the model has a conserved current of the form j* = ¢y*4. The local
axial current given by j*. . = ¥y"y51 is not conserved in this model. Remarkably, however, it
is possible to repair this property by adding nonlocal terms to the axial current, resulting in a
conserved nonlocal current. Hence, one finds an additional hidden symmetry that is realized
in a more subtle way than the naive local Noether current j7#. Commuting the corresponding
nonlocal conserved charges with each other, one finds an expression which is not proportional to
either of the two original charges, but rather generates a new symmetry operator. Importantly,
this procedure can be iterated, inducing more and more new generators and thereby an infinite
symmetry algebra. As we will see, this algebra furnishes a realization of the Yangian and a way
to formulate the integrability of this quantum field theory.

Another prominent occurence of Yangian symmetry is the case of integrable spin chain
models. Here the action of the symmetry generators can be understood as a straightforward
generalization of the above field theory operators to the case of a discrete underlying Hilbert
space. Spin chains are typically defined by a Hamiltonian whose Yangian symmetry may be
tested by commutation with the symmetry generators. Notably, the exact Yangian symmetry
strongly depends on the particular boundary conditions of the system under consideration.
While Yangian symmetry is exact on infinite spin chains (no boundaries), the symmetry is
typically broken by periodic, cyclic or open boundary conditions.! Though this breaking implies
that the spectrum is not organized into Yangian multiplets, the bulk Hamiltonian is still strongly
constrained by requiring a vanishing commutator with the generators modulo boundary terms.
Notably, the Lorentz boost of two-dimensional field theories can be generalized to the case
of spin chain models, where the Poincaré algebra extends to the algebra containing all local
conserved charges [14,15]. These local charges furthermore allow to define generalized boost
operators which in turn generate integrable spin chains with long-range interactions [16].

Interestingly, the above long-range spin chains play an important role in an a priory
unexpected context, namely for a four-dimensional quantum field theory which represents
another toy model for QCD. The planar maximally supersymmetric Yang—Mills theory in four
dimensions? is a conformal gauge theory that is believed to be integrable. The Hamiltonian of
this theory in form of the (asymptotic) dilatation operator maps to an integrable long-range spin
chain Hamiltonian [17-19]. In consequence, the spectrum of local operators, i.e. the spectrum
of this quantum field theory, can be obtained using the powerful toolbox of integrability in
two dimensions. In fact, this Hamiltonian of a psu(2,2|4) symmetric (the symmetry of the
Lagrangian) spin chain features a bulk Yangian symmetry Y [psu(2,2[4)] [20,21].

Indications for the Yangian symmetry of N' = 4 superconformal Yang—Mills theory were
found in the form of Ward identities for various ‘observables’ In fact, also the four-dimensional
S-matrix of the Yang—Mills theory features a Yangian symmetry. This can most clearly be seen
on color-ordered tree-level scattering amplitudes [22] and extends to loop-level when including
anomalous contributions into the symmetry equation [23-25]. Here the color order of scattering
amplitudes plays an important role since it implements two-dimensional characteristics within

IThe same applies to two-dimensional field theories which, however, are typically defined on the infinite line.

2This theory, further discussed in the main text, goes under the name planar A" = 4 superconformal Yang—
Mills theory. Here N = 4 refers to the number of supercharges. The planar limit corresponds to the limit
N — oo of an infinite number of colors of the SU(IN) gauge symmetry.



this four-dimensional Yang—Mills theory. In consequence, the representation of the Yangian
generators on the S-matrix resembles the representation on spin chains or the 2d S-matrix.

This review is published in a collection of lecture notes on integrability [26-30] introduced
by [31]. The structure of the present lectures is as follows: In Section 2 we investigate how
classical integrability makes an appearence in two-dimensional field theories, i.e. we discuss the
classical analogue of Yangian symmetry. Then, in Section 3, we consider the Yangian algebra,
its relation to the Yang—Baxter equation and its embedding into mathematical terminology.
This section is more formal than the rest of the notes; in particular one may skip Section 3.2
and Section 3.3 without missing prerequisites for the subsequent sections. We continue by
studying how Yangian symmetry is realized in two-dimensional quantum field theories, and we
discuss some of the implications of the Yangian on the 2d scattering matrix. In Section 5 we
consider the case of discrete spin chain models and point out similarities to the field theory case.
Finally we introduce how Yangian symmetry plays a role in four-dimensional superconformal
Yang—Mills theory. We finish with a summary and a brief outlook.

2 Classical Integrability and Non-local Charges in 2d
Field Theory

In this section we briefly review how ordinary symmetries are related to conserved Noether
currents in classical field theories. We will see that assuming the associated local current to be
flat, we may construct additional nonlocal currents, which are also conserved. We investigate
how these nonlocal currents relate to classical integrability and the Lax formalism. Finally,
we consider the example of the Gross—Neveu model and comment on the implementation of
nonlocal charges as Noether symmetries. The nonlocal charges considered in this section form
the classical version of the Yangian [32,33].

2.1 Local and Bilocal Symmetries

Consider a field theory with a Lagrangian L£(¢a,0¢4). Here ¢4 represents the fields of the
theory, which we do not specify for the moment. Suppose the Lagrangian has a continous
internal or spacetime symmetry which is infinitesimally realized by a variation d¢4, and for
which the Lagrangian changes at most by a total derivative:

5L = 0, . (2.1)

Via Noether’s theorem this symmetry induces a conserved current j, which obeys the conservation
law

ot =0, (2.2)
and takes the generic form

GH = (%5@@) — f"(pa). (2.3)

Depending on the symmetry, it can be convenient to expand the current in terms of the symmetry
generators according to j# = j¥t,. Here the symmetry algebra g is generated by the operators ¢,
which we assume to be anti-hermitian, i.e. t, = —tI.> The generators obey the commutation
relations

[ta; tb] - fzzbc tc; (24)

3Here we think of an internal symmetry, e.g. SU(N).
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and for simplicity of the displayed expressions, we refrain from distinguishing upper and lower
adjoint indices a, b, c,....* The above conserved current gives rise to a conserved charge defined
by the space integral over its time component®

I(t) = / A1 (¢, ). (2.7)
Due to the conservation law (2.2) the conserved charge obeys the equation
dJ(¢)

C2 == [a eVt e) = - [ d5- ). (28)
v S

If we specify the considered situation to d = 2 spacetime dimensions, we find that the conserved
charge obeys
dJ(t) . .
G =j'(t,5-) = j'(t, S4), (2.9)
where S+ denotes the boundaries of space. We can now furthermore assume that the current
falls off at the spatial boundaries, i.e.

—S4

gt x) ——

and thus the charge J is time independent: %J (t) = 0. In the following the canonical choice will
be to consider an infinite volume V with S1 — Z4o0.

0, (2.10)

Lorentz boost. Consider a Lorentz transformation as an example of a Noether symmetry.
Infinitesimally, this transformation can be represented by

A, =61, + A, (2.11)
where AW = — A\, For illustration, let us assume that we are dealing with scalar fields ¢4, on
which the Lorentz transformation acts as

pa(z) = pa(A™ ) = dpa(x) — M,2"0,¢a(). (2.12)
Hence we have d¢p4 = —A\*,270,¢04. The Lagrangian then transforms according to
0L = —-MN,2"0,L = —0,(\,2" L), (2.13)

and the corresponding Noether current takes the form

w

4In general, these indices are raised and lowered by the Killing form kg, which, in a certain basis, is related
to the structure constants and the algebra’s dual Coxeter number ¢ via

Kad = fabefoed = €2 ad- (2.5)

Alternatively, these algebraic quantities are often expressed in terms of the quadratic Casimir operator C in the
adjoint representation:

- C(sad = fabcfbcd = (tzdj)ac (tzdj)cda (26)

and we have ¢o = —C. In these notes we use either the symbol for the quadratic Casimir C or the dual coxeter
number ¢y depending on the typical convention in the respective context.

5Often the (nonlocal) conserved charges are denoted by the letter Q. Since the literature on integrability is
full of Q’s anyways, we will use the capital J here and save the Q for later.



Here T" denotes the energy momentum tensor defined by

oL
T, = ———0,04 — 0", L. (2.15)
8(3“(15,4)
Note that due to the arbitrariness of the infinitesimal transformation A?,, the above current in
d spacetime dimensions in fact contains d(d — 1)/2 conserved quantities:

()7 = aP T — 2o T", (2.16)

which obey 0,,(j*)?* = 0. For p, 0 = i, j both being spatial indices, the Lorentz transformation
corresponds to a rotation, while for p,o = 0,7 being a combination of the time and one spatial
component, the transformation represents a Lorentz boost. Since we are particularly interested
in two spacetime dimensions, where only one single Lorentz transformation (a boost) exists, we
consider the latter case which gives rise to a conserved charge of the form

= [ @07 - 2 T), (2.17)

Note that if the fields have a non-trivial spin as opposed to the considered scalars, i.e. the fields
transform non-trivially under the Lorentz group, an extra term has to be added to the above
boost transformation. In the case at hand, we may take into account that the Hamiltonian
density is defined as the 00-component of the energy-momentum tensor:

H(z) = 7 (2)dale) — L(2), (z) = 8;5) |

Moreover, since the above charge J% is conserved, its value is time-independent and we may
simply choose t = 2° = 0. Then, in d = 1 + 1 dimensions,® we can rewrite the above boost
charge as the first moment of the Hamiltonian

(2.18)

B=Jn= /dxxH(:v) (2.19)

Suppose the above integral runs from S_ to S, such that we can formally write the conserved
boost charge in the form of a bilocal integral given by”

B~ fdxidyl-H(:c) = [1 [H], (2.20)

S_ S_

modulo a term S_ | 5_* dz H(z) which is proportional to the conserved energy and does hence
not modify the property of the boost to be a conserved charge. Here 1 = 1 denotes the identity,
cf. Figure 1.°

Note that the above example for a Noether charge deals with a spacetime symmetry. Below
we will also encounter examples of internal symmetries and associated charges which may be
extended to bilocal symmetries. The motivation for recalling the properties of the Lorentz boost
here will become clear when we discuss the Yangian.

6We use the conventions (7,,,) = diag(1, —1) and ey = 1.

+oo xT
"For brevity we introduce the ordered product [A|B] = [ dz [ dyA(y)B(z).

— 00
8Note that the discarded term S_ |, Sf dz H(z) diverges in the limit S1 — Fo00. For better readability we
refrain here from antisymmetrizing the bilocal integral in order to regularize the expression. In Section 5.5 we
will see that this formal bilocal expression [1 |H] composed of two local densities 1 and H takes a natural place
in the class of bilocal charges with nontrivial densities on both of the bilocal legs.



Figure 1: Left hand side: Boost generator written as bilocal integral. Right hand side:
Bilocal operator composed of two charge densities.

Bilocal Symmetry. After having refreshed our memory about local symmetries, let us
continue the survey on conserved currents and charges in 1+1 dimensions. Suppose the local
current j* is not only conserved but also flat. Here flatness means that the current obeys the
equation

[0+ Jus O + 5] = 0, (2.21)

i.e. it defines a flat connection. More explicitly, this can be written as
doj1 — Orjo + [jo. J1] = 0, (2.22)

which for j, = juate and [ta, tp] = fae te reads in components

OoJ1a — O1Joa + fabe Jovjic = 0. (2.23)

Under the above flatness or zero-curvature condition, we may define an additional bilocal
conserved current of the form

~

jg(t>$) = ijjl/a(ta .T) - %fabcj;j(ta .CE) / dng(tay)a (224)

which can be seen to be conserved modulo the conservation of the local current j# and the
flatness condition:

,70(4,2) = B, t.2) — Func @, (1.2)) [ Ay 2E0) + Sy 38 2) 2 )
= —0oj1a(t, ) + Orjoa(t, x) — [Jo(t, x), 51 (t, )]s = 0. (2.25)

We will refer to j* as the level-zero current and to j* as the level-one current. As for the local
level-zero current, we can define a corresponding level-one charge by integration over the time
component of the current:

Bty = [ dedte) = [ deiia) = Sfae [ [ dvdyidte)i2y). (2.26)

—00 —0O0

The ordered one-dimensional integral has a similar form as (2.20), just that here both legs of
the bilocal operator are nontrivial. Again we may write the charge in the compact form (cf.
Figure 1)

~

Jalt) = [ dwji(tw) = 4 fue RO (2.27)



Let us check explicitly under which conditions this charge is time independent. We find

Clalt) = - [ A0t~ fo [ deple.)ide)
- %fabc / / dz dy (aljlb(tv l‘))j?(f,y) —|—j£(t,$) (aljlc<t7y))]v (2'28)

where we have used the flatness and conservation of the current. We can partially integrate to
obtain

T0(6) =731t —00) — J2(t,00) — b [f0(t, 000 — Byt ~o0)]. (229
Hence, as above in the discussion of the local charge conservation, we assume that (2.10)
3t x) Z2E25 0, (2.30)
such that indeed i
3 Ja(t) = 0. (2.31)

Since the charges are time independent, we will no longer display their ¢-dependence in what
follows. For the sake of compactness, we may also sometimes drop the explicit time dependence
in the argument of the currents.

Notably, the above definition of the bilocal current distinguishes two points S+ = 400 in the
one-dimensional space and thus allows for an order of the integration variables z and y. That
this is an important input for the definition of the nonlocal charges can be realized by thinking
about a possible generalization to the case of a compact periodic space which has no notion of
order. It is also not obvious how to generalize the above definition of the nonlocal current to
more than one space dimension.

Finally we note that the bilocal charge (2.26) is often written in the alternative and more
symmetric forms

Jo= [ dejit) =3 [ [ drdyo@— gyl 2), 5 )l (2.32)
— [azjita) =1 [ [ dedyelr—pta), 5y (2:33)

where 6 denotes the step function and e represents the sign function.

2.2 Nonlocal Charges and Lax Formulation

In the above section we have seen that two properties of the local current j#, namely to be
conserved and flat, lead to a conserved bilocal current and an associated charge. Is this the only
nonlocal charge we can construct from the above conditions? Let us understand things in a
more systematical fashion along the lines of [34].”

Given a flat and conserved current j,, we can define a covariant derivative D, = 0, + j,.
Conservation and flatness become the statements

[0, D" =0, (D, D,] = 0. (2.34)

9Cf. also [35,36.



Now one may try an inductive approach. Suppose we have constructed a conserved current
3" (x) of level n. The conservation implies that a function (the associated potential) x™(x)
exists, for which

i =ewd’x™,  n>0. (2.35)

In consequence, an additional current can be defined by
3 = DX ™, n> -1, (2.36)
where we set x(~!) = 1. This current is conserved since we may use (2.34) to find

3uj£n+1) — 0"Dux(") _ DuaMX(n) _ GWDMDVX("_I) — 0, n>0. (2'37)

Here we have also used that (2.35) and (2.36) imply o*x™ = (") = ¢ D, (™1 and that
E“V[DM, Dl,] = —2[D0, Dl] =0.

The start of the induction is (™ = 1 with j{™) = 0 and such that j) = j,, which is
indeed conserved by assumption. Then we can write

3 = ewd X, VO == [y (). (2.38)
and thust’ N
=10 = DX = e (@) = (@) [ dy (). (2:40)

Hence, having shown the existence of a conserved current j ;(LO) = j, that obeys (2.34), one can

construct j ;(11) = 3# and an infinite number of conserved nonlocal currents and consequently an

infinite number of conserved nonlocal charges
Jo) = / dz j§ (). (2.41)

The spectral parameter. Now we have obtained a set of conserved charges. Obviously, any
linear combination of these charges will also furnish a conserved charge. We might thus wonder
whether one can construct a conserved generating function T'(u) whose expansion in u yields
the conserved charges constructed above:!!

T(u) =~ Y w b 1J®, (2.42)
k=-—1

For the below discussion it may be useful to be familiar with some of the standard notions of
classical integrability. These are for instance introduced in the review [26] or in the textbook [37].
Let us try to stay within the geometric picture that is suggested by the appearence of the

ONote that the conserved charge corresponding to this current equals the previous version up to level-zero
charges since we have

/ dz j°(z) / dyj°(y) = / / dzdy [°(z), °()] + 1{3.3}. (2.39)

—00 —0O0

"Here we follow the usual convention and consider the expansion in 1/u instead of u and we set J(=1) = 1.



covariant derivative. In fact we may define a new covariant derivative D,,(u) = 0, — L, (u),
where!?

Ly (t, z,u) = u(t ) + we” (8, 7)), (2.43)

u? —1
defines the Lax connection depending on the spectral parameter u. We may then collect both
conditions in (2.34) by requiring that the following equation holds for all u:

[D,.(u), D, ()] = 0. (2.44)

This furnishes a very compact way of writing the conservation and flatness conditions for the
current j,. Note that we can understand the components of L, (u) as a one-parameter family of
Lax pairs, cf. [26].

The above equation (2.44) can be understood as a compatibility condition for the following
so-called auziliary linear problem

D, (u) B(t,z) = 0, (2.45)

which represents a system of two differential equations for the function @(¢, ). In fact, applying
another covariant derivative D, (u) to this equation shows that the solution @ is only well-defined,
if (2.44) holds. Equation (2.45) relates an infinitesimal translation generated by 0, to the flat
connection L, (u).
Next we determine the transport matrix T(¢, xq, z; u), which transports the solution @(¢, z, u)
along the interval [xg, z]:
O(t,x,u) = T(t, o, x; u)D(t, o, u). (2.46)

Note that this transport matrix may be defined by the equations (cf. e.g. [35,38,39]):
Di(u) T(t, o, x;u) =0, T(t, xo, xo;u) = 1. (2.47)

We may integrate (2.47) along the z-coordinate and obtain the explicit path-ordered solution:
T(t, zo,z;u) = P exp [ /d:p' Ll(t,x',u)] : (2.48)
zo

Here P denotes path-ordering with greater x to the left. Based on this expression, we define the
monodromy matriz'® T(t;u) as the transport matrix along the whole z-axis:
T(t; u) = T(t, —00, 00; u). (2.49)

In order to evaluate the expansion of T(¢;u) in powers of 1/u, we note that for v = 1/u we have

Lu(ta €, U)

=0, ALutav)| | =ewi'(te), dSlutav)| | =2te), (250)

v=0

and thus we obtain

17 1 [ 7 [T
() =1-- [ dejolta) + 5| [ dwjutea)+ [ do [ dygolto)inttv)| +O()
- B o (2.51)

2Note that in the language of differential forms, this is a linear combination of j and %j, where * denotes the
Hodge star. In this language the form of the Lax connection L might appear more natural.
13Tn ancient greek we have: pévos [“monos”): single and dpbpuos [“dromos”]: course, path, racetrack.
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Hence, we find indeed the level-zero and level-one charges as the first coeffcients of the expansion

(2.42), cf. also (2.39). Assuming that j,(z) 222 ), one can also show that in general

CclitT(t; u) = Lo(t, +o00,u)T(t; u) — T(t;u)Lo(t, —00,u) — 0. (2.52)
That is the monodromy T(u) = T(¢;u) really furnishes a conserved generating function for
infinitely many conserved charges J™. See [26] for more details on the Lax formalism and the
classical monodromy.

For certain models, the above nonlocal charges can be understood as the classical analogues
of the Yangian algebra introduced below [32,33]. Whether the charges really form a classical
Yangian or another algebra depends on the Poisson algebra of the currents which in turn depends
on the model. A classical Yangian can for instance be found in the chiral Gross—Neveu model
or the principal chiral model, cf. [32]. In these models it was also shown that the above boost
charge (2.19) Poisson-commutes with the charges J, and J,:

{B,J,} =0, {B,J,} =0. (2.53)

In Section 4.2 we will see that these commutation relations become nontrivial in the quantum
theory.

2.3 Chiral Gross—Neveu Model

Let us consider some of the above concepts for the case of the 141 dimensional chiral Gross—Neveu
model. This theory introduced in 1974 by Gross and Neveu [13] represents the two-dimensional
version of the four-dimensional Nambu—Jona—Lasinio model [40]. It furnishes a toy model for
QCD with a surprisingly rich catalogue of features. While conformal at the classical level,
masses are generated by quantum corrections. Furthermore the theory is asymptotically free
and can be solved in the large-N limit, where N is the parameter of the global symmetry (V).
Remarkably, the theory is also integrable which can be seen as follows.

Local and nonlocal currents. We consider the Lagrangian of the u(/N) symmetric chiral
Gross—Neveu model*

L= é Fid)a + 922 [(éz/?%f = (é&“waﬂ, (2.54)

with @ = 4#9,. The Dirac fermions are denoted by t,; and &j‘ = z/;j"‘(fyo)ij with i,j = 1,2
and with fundamental or anti-fundamental u(NV) indices «, respectively. The two-dimensional
gamma matrices in the Weyl representation take the form

01 . 0 1 -1 0
Yo =01 = (1 O)’ M1 =102 = (_1 0> ) 5 :’YO”Yl = ( 0 1> ) (2.55)

and obey the Clifford algebra {v,,7,} = 2n,,. The Lagrangian also has a chiral u(1) symmetry

Vo — 9B, (2.56)

4Note that there is also the 0(2N) symmetric Gross—Neveu model (without chiral) on the market, whose
Lagrangian is given by dropping the vs-term.

11



which is not broken at the quantum level since the massive particles generated by spontaneous
symmetry breaking are not charged under this symmetry, and the particles carrying a chiral
charge decouple.'®

Alternatively, the above Lagrangian can be written in the form

£ = (i) + g° | (rta) (971a5) . (2.57)
where we do not display the sum over double indices a,b,---=1,...,N?and a,8,---=1,..., N
from now on. Here t, = —t! represent the N2 generators of u(N). In the following we will refer

to (2.57) as the chiral Gross—Neveu Lagrangian. For practical reasons one sometimes considers
the case of generators t, of su(N) instead of u(N).
The equivalence of the above Lagrangians can be shown by using the Fierz identity

(V)i (V) = 0udrg — ()i (V5 ) ks (2.58)
as well as the following identity for the u(N) generators:'°
(ta)a” (ta)y” = —30057. (2.59)
The (Euler-Lagrange) equations of motion read
0 =00y = 2¢° (V" tat)) (Wuta)®, 0= iV"Outba +20°(Vutath)a(¥1'tath).  (2.60)

Now we multiply these equations by 1 and ¢, respectively, and use again the identity (2.59).
Combining the two equations of motion then yields

(0,0 b + i) Y uips = 0, (2.61)
which directly implies that the following current is conserved [42]:
Ja = _292i(&a7#(ta>aﬁwﬁ)' (2.62)

Here the normalization is chosen for later convenience. In order to see the flatness of this
current, we note that the equations of motion imply

Ewiau(ia%wﬁ) = QQQEHV(QZQ'Vuww)(&WWuwB)a (2.63)

where we used that {vs,7,} = 0 and 7,75 = —€,,7" as well as the identity (2.59). In terms of
the current and contracting with a generator t,, this takes the form

elwau(jV)aﬁ (ta>a6 = Eul’(ju)aw(jz/)wﬁ (ta>a67 (2-64)
and thus yields the flatness condition

0oj1a — O1Joa + [Jo, j1la = 0. (2.65)

In consequence, we can construct a bilocal current j according to the procedure described above.

5Therefore this mass generation mechanism is not in contradiction with Coleman’s theorem forbidding
Goldstone bosons in two dimensions [41].

6For su(N) symmetry the Lagrangian (2.54) gets an extra 1/N term coming from the su(N) identity
(ta)a(ta),? = —%65 8% + 550267, For a more transparent illustration of the equivalence of the two Lagrangians
we have considered the u(N) symmetric Lagrangian here.

12



Axial current. Note that as a starting point to obtain a bilocal current we might also have
considered the axial current

(jaxial)g - _2g2i1;75’7uta¢ = Elemz (266)

which is familiar from our quantum field theory course, but which is not conserved in this model
since (cf. (2.65))

8M(jaxial)g = auewjju,a = _80.j1a + alea 7£ 0. (267)

However, the bilocal current constructed from the conserved current j# can be understood as a
nonlocal completion of this axial current which is then conserved as seen above, cf. [43]:

~

Jua(@) = Gasia o — 3 / dy (). Jo(y)]a- (2.68)

Poisson algebra and Lax formalism. In order to study the symmetry algebra that is
generated by the above currents, we have to define a Poisson bracket for the Dirac fermions [39]:

5§ 5 3
(F.ey=ifda azl F(w;%x) 50ms @) | 50y (@) aw}%))a (2:69)

7=1,2

Here the arrows are introduced to take care of the Graimann statistics of the fields and they
indicate whether the variation acts on the function F' or G. Using this definition of the Poisson
bracket one can show that the current (2.62) obeys the algebra relations

{g4(@), 35 (W)} = 29°6(x = y) fape ™, (2.70)

with the su(N) structure constants fu,.. The Lax connection and monodromy matrix can be
defined as in (2.43) and (2.48), respectively. Their commutators with the classical R-matrix of
the chiral Gross—Neveu model (see e.g. [26,37] for these notions of classical integrability)

Ce

r(u,v):u_v,

(2.71)

may then be considered as the fundamental integrability equations of this physical system,
cf. [39]. For g = u(N) and generators t, in the fundamental representation, the tensor Casimir
is given by Cg = PP, with P representing the permutation operator that acts on a state a ® b
according to

Pa®b=>b®a, (2.72)

and on an operator A ® B by conjugation:
PA® BP=B®A. (2.73)

We will encounter the permutation operator in its role as the tensor Casimir several times in
this review.

2.4 Nonlocal Symmetries as Noether Charges

A very valid question is whether also nonlocal symmetries can be understood as Noether
symmetries. At least for particular cases this question has been answered with a ‘yes’, cf.
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e.g. [44,45]. For illustration let us briefly review some results of [44] and consider the so-called
principal chiral model in two dimensions with Lagrangian

L= ;Traug(x)ﬁ"g_l(:v). (2.74)

Here the field g(x) is group-valued, i.e. an element of a group G. The equations of motion take
the form of a conservation equation
3" =0, (2.75)
for the current
ju = g_laug = _(a,ug_l)g- (276)
This current is also flat. As discussed in [44], one may define the following nonlocal field variation

o g =~ g, . WOw) =3 [ aye(e —p)ioy), (2.77)

where p = t%p?, with t* denoting the generators of the group G and p* being some constants.
Here x(© represents again the potential associated to the level-zero current of (2.38). The
Lagrangian is invariant under this transformation up to a total derivative:

0L = 3 Tejud X, pl = 05 Tr | (e [0 X O] + ") ). (2.78)
Importantly, the equations of motion have not been used to arrive at this form. This level-one
symmetry (cf. (2.3)) yields the conserved level-one Noether current

j/(}) = —€uj" + [j/w X(O)] — %EMV[8VX(0)7 X(O)]- (2.79)

The conservation of this level-one current implies the flatness of the level-zero current, which is
very much in agreement with our intuition gained in the previous subsections:

aujﬁl) ~ —0oj1 + 010 — [Jo, J1]- (2.80)

Interestingly, the current (2.79) does not have the standard form of (2.24). In fact, the current
is conserved without making use of the equations of motion. It is thus conserved on the set of
all fields, i.e. off-shell. Using the equations of motion such that

8#X(1) _= _E,U,l/jyu (281)

(2.79) reduces to the standard form (2.24) of the level-one current. Note that one might also
have started with an ansatz of the form (2.79) in order to determine x® such that ;) is
conserved, cf. [46]. Notably, the above symmetries may be extended to a one-parameter family
of nonlocal Noether symmetries [45]. As the monodromy considered above, this family furnishes
a generating function for the parameter independent symmetries. Before we discuss the physical
realization of the quantum version of the classical nonlocal symmetries considered in the previous
subsections, we will now introduce the Yangian.

3 The Yangian Algebra

This section follows the line of the beautiful original papers by Drinfel’d who introduced the
notion of Yangians in the context of quantum groups. In 1990 he was awarded the Fields Medal
for his work on quantum groups and for his work in number theory. We will discuss three
different realizations of the Yangian, which means three different mathematical definitions of the
same algebraic structure that are related by isomorphisms. As opposed to the rest of these notes,
in this section we sometimes distinguish between abstract algebra elements, e.g. a generator J,
and their representation, e.g. p(J).

14



3.1 Yang’s R-matrix and the First Realization

One of the most important concepts underlying integrable models in general is the famous
quantum Yang—Baxter equation. This equation was found to emerge in the context of a one-
dimensional scattering problem by Yang in 1967 as well as for the eight-vertex model by Baxter
in 1972 [47,48] (see also [49]). In fact also the Yangian was defined in order to determine
solutions to this equation. Let us see how this happened.

Yang’s solution to the Yang-Baxter equation. In the paper [47] (see also [50]) Yang
considered the following one-dimensional Hamiltonian for n interacting particles in a delta-
function potential:

n 82
H=-Y —=+2 Y 0z — ), c>0. (3.1)
1 O 1<j<k<n

He made a (coordinate) Bethe ansatz!” (cf. [29]) for the wavefunction of this quantum mechanical
problem, which in the domain 0 < xp, < --- < zy, < L takes the form

W(rg, < <) = Y Miydogign XPP; T+ + Tk (3.2)
{j1,-»jn }EPerm{1,...,n}
with the sum running over all n! permutations of 1,...,n. Here M can be organized as an
n! x n! matrix spanned by the n! column vectors &:
M = (fhafbw“affm) . (33)

These vectors have indices I = {1,2,3...,n}, L ={2,1,3,....,n}, ..., Lu={n,n—1,... 1}
Notably, with this general ansatz Yang made no assumption on the symmetries of the wave-
function or the exchange statistics of the particles, respectively. It is however assumed that the
scattering is purely elastic, i.e. that the values of momenta form a fixed set and are conserved
individually. Often, in addition a particular exchange symmetry is assumed which allows to
reduce the matrix M in the above ansatz to one row.!®

From the form of the Hamiltonian (3.1), one can deduce by integrating the Schrodinger
equation in center of mass coordinates that the wavefunction ¥ has to be continuous at x; = wy,
while its first derivative should have a discontinuity at these points. Yang found that these
conditions are satisfied at for instance xy, = wy, if the permutation of the momentum labels js
and j, is compensated by a factor of the so-called R-matrix:

Eirorgaandsedn = 34 Raa(Wjgis) 1 ngais.dsseenin (3.4)

Here we make the exchange operator P34 for the particles with coordinates xy, and zy, explicit,
while it is sometimes included into an alternative definition of the R-operator.'” The above
R-matrix accounts for the scattering of two particles.

1"The Bethe ansatz is named after Hans Bethe’s solution to the Schrédinger equation for a spin chain [51].

8For identical fermions one would have ¥(z,, ..., Tp,, T, -, Tk, ) = —F(Tp,, ... s Ty Thys oo Tk, ). FOT
identical bosons the physical system with the Hamiltonian (3.1) is called the Lieb—Liniger model [52] and we
would have W(zg,, ..., Tk, T,y s Th,) = Y( Ty ooy Thyy Thys - -+ Ty, )-

19The operator IP;; represents the permutation operator on the vector £; permuting the entries k; and k;. An
alternative definition of the R-matrix found in the literature is R;; = P;; Ri; (note that P? = 1). Acting on £,
we have for identical bosons IP;; = 1 while for identical fermions IP;; = —1. For a model of identical bosons for
instance, whose wavefunction is symmetric under exchange of particles at xx, and xy,, the permutation operator
on the right hand side of (3.4) acts as the identity and Rgs(uj,;,) represents the scattering matrix for the two
bosonic particles 3 and 4 with momentum difference u;,;, = pj, — pjs,-
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Figure 2: Illustration of the Yang—Baxter equation.

As discussed by Yang, the n!(n— 1) equations of the above form (3.4) are mutually consistent,
if the R-matrix is unitary, i.e. if we have Ry, (u)Ry0(—u) = 1 and if the following quantum Yang-
Bazter equation is obeyed, cf. Figure 1 (see e.g. [53] for a nice introduction to the Yang-Baxter
equation by Jimbo):

R12(U12)R13(U13)R23(U23) = R23(U23)R13(U13)R12(U12)- (3-5)

For three identical bosons for instance, IP acts on £ as the identity, and the Yang-Baxter equation
can be understood by noting that via (3.4) the expression {39, can be obtained from ;93 in two
different ways, which have to be consistent:

R12(U12)R13(U13)R23(U23)5123 =301 = R23(U23)R13(U13)R12(U12)5123- (3-6)

The quantum Yang—Baxter equation is of central importance for integrable models and appears
in many different contexts. In general, it represents an operator equation acting on three spaces
V1 ® Vy ® V3 labeled 1,2 and 3. Each R-matrix (e.g. Rjs) acts on two spaces (e.g. 1 and 2),

and is a four-index object more explicitly written as?
Q O
kok kak
R”i12i21 = [R‘12]’i12i21 = @ . (38)
That is, when acting on n-dimensional vector spaces V with basis vectors vy, ..., v, we have?!
R(u)[v; @ v;] =) Rfjl(u) v @ . (3.10)
k)l

Coming back to the above specific model with delta-function potential, the solution to the
quantum Yang—Baxter equation given by Yang takes the form

s ic
Ry (1) = ——9 (]lm—IPm>, 3.11
em (Uij) e\ ;e (3.11)

20 Alternatively, one can write the Yang-Baxter equation as

].:{]?2’fl ('I.L12)RI»€3vj3 (U13)Rj2j1 (Ugg) = Rk?’kz (UQg)RJ»-SI?I (ulg)Rj2j1 (ulg). (37)

J1J3 Jj213 1182 J3J2 1171 1213

21Using a tensor product notation, the R-matrices entering the Yang-Baxter equation can also be written as

Rio=R®I1, Ros =1®R, Ri3 = (]P@]l)RQg(IP@]l). (39)
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where the parameter w;; = p; — p; is given by the difference of the particle momenta. Note
again that for instance for the symmetry algebra u(N) with generators J, in the fundamental
representation, the permutation operator can be written as the tensor Casimir operator IP =
Cy = J, ® J,. For this reason, the solution

c
R(u) = 14— Cg, (3.12)

u
to the quantum Yang-Baxter equation is called Yang’s R-matriz. Here ¢ denotes some constant.

The Yangian. Almost twenty years after Yang, in 1985, Drinfel’d studied the quantum Yang—
Baxter equation in order to develop an efficient method for the construction of its solutions [3].
Drinfel’d was one of the pioneers in introducing the related concept of quantum groups which
he motivates as follows:

“Recall that both in classical and in quantum mechanics there are two basic concepts:
state and observable. In classical mechanics states are points of a manifold M
and observables are functions on M. In the quantum case states are 1-dimensional
subspaces of a Hilbert space H and observables are operators in H (we forget the
self-adjointness condition). The relation between classical and quantum mechanics
is easier to understand in terms of observables. Both in classical and in quantum
mechanics observables form an associative algebra which is commutative in the
classical case and non-commutative in the quantum case. So quantization is something
like replacing commutative algebras by noncommutative ones.” V. Drinfel’d 1986 [5].

For Drinfel’d the starting point to understand the quantum R-matrix R(u, k) was its classical
counterpart r(u) obtained in the limit & — 0 from

R(u, k) ~ 1 +hr(u) + O(h?). (3.13)

Subject to the quantum Yang—Baxter equation (3.5), the classical R-matrix r(u) satisfies the
classical Yang—Baxter equation:

[112(w12), ris(uis)] + [r12(wi2), r23(ues)] + [ris(uis), m23(uas)] = 0. (3.14)

Drinfel’d considered Yang’s solution
(W) = 2o = 13,07 (3.15)
T Uu = - = — a a .
w® u

of the classical Yang—Baxter equation. Here Cy = J, ® J, again represents the tensor Casimir
operator of the underlying finite dimensional simple Lie algebra g with generators J,. Given a
representation p : g — End(V) of the Lie algebra, Drinfel’d’s intention was to show that solutions
to the quantum Yang—Baxter equation exist, which have the form of quantum deformations
around the classical R-matrix r(u). Assuming that h ~ %, equation (3.13) can be translated
into an A-independent form. The precise question then becomes whether rational solutions to
the quantum Yang-Baxter equation exist which have the form

uk

(0 p)(R(w)) = 1+ p(1) @ p(i) (3.16)

k=2

Here we now distinguish between an abstract, more universal algebra element R and its
representation (p ® p)(R).
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Before coming to the actual definition of the Yangian algebra, we have to introduce another
piece of notation. Since the above operators act on tensor product states, one important question
is how to generally promote representations from one site or vector space, to two or more sites.
In physics language this might for instance be the question of how to go from one-particle to
multi-particle representations in the context of scattering processes. The mathematical answer
to this question is given by the so-called coproduct A acting for example on the elements of a
Lie algebra g according to A : g — g ® g. In the particular case of a Lie algebra with generators
Ja, the (primitive) coproduct is simply given by the tensor product action:

A(Jo) = Ja @1 4+1®Jy = Ja1 + Jap. (3.17)

In scattering processes relating asymptotic in- to out-states, on which the coproduct acts
differently (see also Section 4.3), it is useful to also define an opposite coproduct A°P via*

AP=PAP. (3.18)

Here P again denotes the permutation operator that acts on the coproduct by conjugation.

Looking at (3.16), we see that at least the first order of the expansion of the rational R-matrix
is completely specified by Lie algebra generators J,. In order to define an abstract object R(u)
that obeys the Yang—Baxter equation and has a rational form (3.16), one may thus wonder
whether also the higher orders of the expansion can be defined in terms of some (possibly
generalized) algebra. This is indeed the case. Inspired by Yang’s first rational solution (3.11) to
the quantum Yang-Baxter equation (3.5), Drinfel’d introduced the following Hopf algebra as
the Yangian [3].

-~

First Realization. Given a finite-dimensional simple Lie algebra g with generators J,,
the Yangian Yg] is defined as the algebra generated by J, and J, with the relations

[Jm Jb] = fachca [ijb] = fabcjcy (319>

and the following Serre relations constrain the commutator of two level-one generators®

o~

[jaa [jba c]] - [Jaa [jba Jc“ = hQQabcdef{de Je7 Jf}a (320>
[[Jra Js]a [Jaa Jb“ = hz(gabcdeffrsc + grscdeffabc){‘]d7 J67 Jf} (321)

o
)

[
Al
—

S

)
L

+ <

Here the fu. denote the structure constants of the algebra g and we have
1
Gabedef = = fadifvej fefk fijis {z1, 20, 23} = Z i Tk (3.22)
24 i#i#k

For completeness we already note that the Yangian defined by the above relations is a Hopf
algebra (discussed in more detail below) with the coproduct®*

L AJ) =T, 21+1® ], AJy) =Ja @1 +1@ Ty — Mifuredy ® T (3.23)

22The permutation or transposition of factors is sometimes alternatively denoted by o acting as oo(a®b) = b®a.
That is we can alternatively write A°? =g o A.

23These Serre relations are sometimes called Drinfel’d’s terrific relations since Drinfel’d referred to the “terrific
right-hand sides” of (3.20) and (3.21) in the proceedings [4]. Note that in a later version of those proceedings, the
word “terrific” was exchanged for “horrible” [5]. The left hand side of (3.20) may also be written as a three-term
expression of the form of the Jacobi identity, cf. [54].

24 Here we could alternatively write —hfapedy @ J. = h[J, ® 1,Cg], where Cgy = J, ® J, denotes the tensor
Casimir operator of the underlying Lie algebra g.
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Strictly speaking the Yangian was defined as the above algebra with 2 = 1. This can usually be
achieved by a rescaling of the level-one generators. Still it is elucidating to sometimes make the
quantum deformation parameter A of this quantum group explicit.

Note that for g = sl(2) the relations (3.19) imply (3.20). For g # s((2) (3.21) follows from
(3.19) and (3.20) as already noted by Drinfel’d. Hence, we can neglect (3.21) for most cases and
we will refer to (3.20) as the Serre relations in what follows.

As opposed to more familiar commutation relations of Lie algebras, the above definition does
not specify the commutators of all generators. Rather we obtain a new generator from evaluating
J((f) >~ fube [jb, jc] in addition to J((IO) =J, and Jf}) = J,. In this way one may iteratively obtain
an infinite set of generators that defines the infinite dimensional Yangian algebra. The Serre
relations furnish consistency conditions on this procedure as is discussed in some more detail
below.

Yang—Baxter equation and Boost automorphism. Let us come back to Drinfel’d’s
original motivation for introducing the Yangian, namely the construction of rational solutions
to the quantum Yang-Baxter equation. In order to do so, he defined the automorphism B, of
the Yangian algebra Y [g] with the property [3]

B.(Ja) = Ja, Bu(Jo) = Jo + ula, (3.24)

for all w € C. The mathematical importance of this operator is due to its role for the below
construction of solutions to the Yang—Baxter equation from the Yangian. Physically, this
automorphism B, is realized in 141 dimensional models by the Lorentz boost of rapidity u. In
these theories the above nontrivial action of B, thus couples the internal Yangian symmetry with
the spacetime symmetry. Due to this physical role we will refer to B, as the boost automorphism
in what follows.?> Subject to the properties of this operator, the following theorem due to
Drinfel’d holds.

Theorem 1 There is a unique formal series

Riu) = 1 +§:1Rk1; Ri € Vg © Y[, (3.25)
such that
(A® 1R (1) = Ry ) Ros 1), (1 ©AYR(w) = Ray(1)Roa(), (3.26)
and with A°(a) = P A(a) P we have
(B, © 1)A(a) = R(w)(B. ® 1) AR (u), (3.27)

for a € Y[g]. The operator R(u) satisfies the quantum Yang—Bazter equation. In addi-
tion, the so-called pseudo-universal R-matriz R(u) satisfies a unitarity condition of the form
Ri2(u)Ro1(—u) =1 and can be expanded around infinity in the rational form

1 1 - R 1
log R(w) = 1o ® Ja + —5(Ja @ Ju = Ja ® ) + (9<u3> (3.28)

Lastly, the R-matrixz transforms under the boost automorphism as

(B, ® 1)R(u) = R(u +v), (1 ®B,)R(u) = R(u — v). (3.29)

25Tn the literature one also finds the names evaluation-, translation- or shift-automorphism for B,,.
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Thus for a given irreducible representation p : Y[g] — Mat(n, C), the operator
R?(u) = (p @ p)(R(u)) (3.30)

is a solution to the quantum Yang-Baxter equation in the form of (3.16).%

Notably, the above theorem maps the search for rational solutions to the Yang—Baxter
equation to the search for representations of the Yangian algebra. However, since in general we
do not know the pseudo-universal R-matrix R (and cannot obtain it easily), this does not allow
to straightforwardly construct representations of solutions to the Yang—Baxter equation. For
this purpose, another theorem is very interesting [3, 54].

Theorem 2 Given a finite dimensional irreducible representation p : Y[g] — End(V), the
pseudo-universal R-matriz evaluated on this representation R,(2) = (p® p)(R(z)) is the Laurent
expansion about z = 0o of a rational function in z. The operator

defined by the below constraints, is up to a scalar factor (and up to finitely many u — v) the
same solution to the quantum Yang-Baxter equation as R, obtained from the pseudo-universal
R-matriz. The constraints on R(u,v) = R(u — v) take the following form:

Level zero:  (p ® p) [Ja R1+1 ®J4R(u, v) = R(u,v)(p ® p) {Ja R1T+1 ®Ja}, (3.32)
Level one:  (p® p) [(ja +ul,)@1+1 ®(ja +vl,) + %fachb ® JC}R(U, v) =
R(u,v)(p @ p)|(Ja + uJa) © 1+ T @(J, + 0Ja) = § faredy @ Jc]. (3.33)

These constraints can be evaluated as a finite system of linear equations.

Notably, all rational solutions to the quantum Yang—Baxter equation can be generated from
Yangian representations in this way.

Example: Y [su(2)]. For illustration let us consider the rank-one example of g = su(2) with
representation p : Y'[g] — Mat(2,C) defined on one site as p(J,) = J, = § and p(J,) = 0. Here
Oa=123 denotes the Pauli matrices such that [J,, J,] = €aeJ.. The above constraints at level

zero, i.e.
Jo®1+1&J,, R(u,v)] =0, (3.34)

correspond to the ordinary su(2) Lie algebra symmetry. For R(u,v) : C? ® C?* — C? @ C? we
have only two independent irreducible representations which are mapped onto themselves by
the su(2) symmetry, i.e. in terms of Young tableaux:

oeo=Hewm. (3.35)

In consequence there are also two su(2)-invariant operators of range two, e.g. the projectors
onto the two irreducible representations. We already know that for u(2) the tensor Casimir Cg
takes the form of the permutation operator IP. Obviously, this operator also commutes with the
su(2) symmetry. A second invariant operator is the identity 1 (the second Casimir of u(2)) and
hence the level-zero symmetry constrains the R-matrix to be of the form

R(u,v) = a(u,v) 1+ b(u,v) P, (3.36)

26Gee (3.28) for the explicit application of the single-site representation of J ,j to the R-operator.
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with arbitrary coefficients a(u,v) and b(w,v). After multiplication with the permutation
operator PP, the level-one constraint is given by?’

(0Ja®1 +u 1 ®Jo—Feares@Jc) PR(u,v) = PR(u, ) (uda @1 +0 1 ®J0— Seaels @), (3.37)
which implies

[eabeds @ Je, PR(u, 0)] = (vJa ® 1 +u 1@J,) PR(u,v) = PR(u,v) (uly @1 +01@J,). (3.38)

%
Furthermore noting that we have

[€abedy @ I, Pl =J, @ 1T -1 ®J,, (3.39)
and using (3.36), we thus find

— sa(u, v)(Ja @1-1 ®Ja) = (u—v)b(u,v) (Ja ®1-1 ®Ja). (3.40)

Hence, we have —3a(u,v) = (u — v)b(u, v) such that Yangian symmetry fixes the R-matrix up
to an overall factor to be of Yang’s form (3.12):

R(u,v) = a(u, v)(]l _2(u1—v) IP). (3.41)

Note that for the above normalization of a basis of u(2) we have Cg = P. This example for
g = su(2) illustrates the basic principle of how to fix the matrix structure of an R- or S-matrix
from Yangian symmetry and can be generalized to more complicated algebras g.

Representations and Serre relations. If you encounter a symmetry in a physical model
that has generators J, and J, and follows the coproduct structure (3.23), this is a promising
sign that you are dealing with a Yangian algebra. However, you will have to verify that your
generators obey the Serre relations, which is typically hard work. It may thus be useful to
understand the nature of these Serre relations a bit better.
The above coproduct is an algebra homomorphism, that is the following relation should hold
for a,b € Y[g|:
A(la,b]) = [Aa), AD). (3.42)

This homomorphism property is trivially obeyed for some commutators of generators with the
coproduct structure (3.23), i.e. one easily verifies that

AJas B]) = [AJa), A, Ao, 1)) = [A(Ja)s AJ)]. (3.43)

Consider for instance the second case, whose left- and right hand sides explicitly evaluate to

A([Jaa jb]) - A(fabcjc) = fabc 1 ®jc + fabcjc ®1 _%fabcfcdet]d & Jea (344)
[AJ), ATy =101, + 1. @ 1,103 + 3, @ T —3 freade @ Jd]
= fabc 1 ®jc + fabcjc & 1 _%(fbdcface + fbcefacd)Jd X Je- (345)

Both sides are equal upon using the Jacobi identity fipefede + faaefeve + fodefeae = 0. On the
other hand, the relation

A([Ja, ) = [A(Ta), A(J)] (3.46)

27Sometimes one introduces R = PR and rephrases the above statements in terms of this operator.
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or when making the representation p explicit

~ o~ o~

P(A([Tas I)]) = [p(ATa)), p(AT))], (3.47)

does not trivially follow from the definition of the coproduct, but it implies non-trivial constraints
on the representation p of the Yangian generators. This can be seen by noting that the left hand
side of (3.47) forms part of the antisymmetrized tensor product of the adjoint representation
with itself

(adj ® adj)asym = adj & X. (3.48)

This relation defines the representation X that does typically not contain the adjoint represen-
tation. The adjoint part defines the coproduct for the level-two Yangian generators while the
Serre relations furnish a sufficient criterion for the vanishing of the X-component, cf. e.g. [55]
for more details. In fact, if the Serre relations are satisfied for the one-site representation, they
will also hold for the n-site representation since the coproduct preserves the Serre relations.

Construction of representations. As pointed out by Drinfel’d, given a Lie algebra represe-
nation p one may choose the following one-site representation py of the Yangian generators

~

pO(‘]a) = p(‘]a)7 pO(Ja) =0. (349)

The left hand side of (3.20) vanishes in this case. In order to show that our representation pg
obeys the Serre relations, we have to show that the X-projection of the right hand side of (3.20)
vanishes for the one-site representation:

pO({Janb;Jc}>|X =0. (350)

In [3] Drinfel’d indicated the existence of such representations for all types of algebras g except
for eg.?® Once (3.50) is shown for the one-site representation, one promotes the representation
to multiple sites via the coproduct which preserves the Serre relations.

Evaluation representation. For some representations p of the Lie algebra g there exists a
so-called evaluation representation p, of the Yangian algebra given by

pu(Ja) = po(Ja), pu<ja) = upo(Ja)- (3.51)

As discussed above for u = 0, this choice puts the constraint on the representation that the right
hand side of the Serre relations vanishes for the one-site representation since the left hand side is
trivially zero. The evaluation representation can also be defined using the boost automorphism
and the above representation py as follows:

pulla) = po(Ja). pul3) = po(Bu(3.). (352

This representation is important for evaluating the Yangian symmetry of the two-particle
S-matrix S(u,v) where u and v represent particle rapidities, cf. Section 4.3. For this purpose
it will be useful to explicitly evaluate the two-site representation using the coproduct and the
two-site boost automorphism

B, ®By(AJ,) =ule @140 1@J, + T, @ 1+ 1®J, — L fupedy @ Je, (3.53)

Z8These representations also play an important role in the AdS/CFT correspondence. The Serre relations
were shown for representations of psu(2,2|4) [21] and osp(4|6) |55] that realize the Yangian symmetry in N' = 4
super Yang-Mills and A/ = 6 superconformal Chern-Simons theory.
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Classical Mechanics Quantum Mechanics
States Points on manifold M 1d subspaces of Hilbert space H
Observables || Algebra of functions on M Algebra of operators on H

Classical Group Quantum Group
States Elements of group G ?
Observables || Algebra of functions on G ?
Quantization T

Commutative — Non-commutative

Table 1: What is a quantum group?

which yields®

Pu & Pv (A(ja)) = Po & Po (Bu & B'U(A<ja>>) =p & P(U Ja RQ1T+v 1 ®Ja - %fabc‘]b & Jc)
(3.54)

3.2 The Yangian as a Hopf Algebra and Quantum Group.

We continue our study of the mathematical structure behind the Yangian together with Drinfel’d:

“Now let us consider the elements of a group G as states and functions on G as
observables. The notion of group is usually defined in terms of states. To quantize it
one has to translate it first into the language of observables. This translation is well
known, but let us recall it nevertheless.” V. Drinfel’d 1986 [5].

Hopf algebras. We are now interested in generalizing the quantization of classical mechanics
to the case of groups or algebras, cf. Table 1. Following [4, 5], we thus want to understand
how the properties of a group considered as the space of states, translate into the language of
observables. For this purpose we remember that a group is defined as a pair (G, f) of a set G
and a group operation f such that

f:GxG—G. (3.55)

Remember also that a group is defined to be associative which can be conveniently displayed

using the following diagram:
f/ GxG f
g \
G

FUfxD)(x,y,2) = FAxf)(2,y,2) : GxGxG

]lm /

GxG

, (3.56)

for z,y,z € G. We consider the algebra a = Fun(G) (the observables) consisting of functions on
the group G. The group map f induces an algebra homomorphism*’ which is dubbed coproduct

29The evaluation representation may be used to define Yangian-invariant deformations of scattering amplitudes
in N = 4 super Yang-Mills [56] and N = 6 superconformal Chern-Simons theory [57].

30 An algebra homomorphism between two algebras a and b over the field C is a map A : a — b such that for
all ke Cand a,b € a:

Aka) = kA(a), Ala+b) = Aa) + A(b), Alab) = A(a) A(b). (3.57)
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or comultiplication’!
Ara—a®a, (3.58)

where a ® a = Fun(G x G). This is the coproduct we already encounterd above. As mentioned,
in physics the coproduct furnishes a prescription for how to extend the symmetry from one- to
multi-particle states in a fashion that is compatible with the underlying algebraic structure.

Translating the associativity of the group map to the coproduct A we find the property of
coassociativity, i.e.

//5/'a®a\48i
(1®A)A®) = (A 1)Aa) - a 1@a®a. (3.59)

a®a

Finally we need to find the analogue of the group inversion xz — 2!, which is denoted the
antipode
s:a—a, (3.60)

and the analogue of the unit element e of the group, which is denoted the counit:
e:a— C. (3.61)

We also have an ordinary multiplication m : a ® a — a, and the unit map n : C — a defined as
n:cr—c- 1, for c € Cand 1 € a. These maps should obey the following commutative diagrams
which correspond to e-x =x and x-e =z for x € G:

1 1
a a a——— a
a=(1®e)A(a): A , a=(e®1)A(a): A
1 1
a®a—§ia®c a®a3g»C®a

Lastly, all of the introduced maps should be compatible with each other and obey the relations

a®as®]1 a®a
A/ X
m(s @ 1)A(a) =n(e(a)) = m(l ®s)A(a) : a ¢ c—"T1 4. (3.62)
A\ S
1®s
a®a a®a

The above properties of (a, A, s, e,m,n) define the commutative Hopf algebra a. This Hopf
algebra furnishes a notion of the class of observables in the context of groups.
Importantly, a Hopf algebra is called cocommutative if the opposite coproduct obeys

AP(a) = A(a), (3.63)

31The coproduct is induced via (A(a))(zy) := a(xy) for a € a and x,y € G, cf. e.g. [58] for more details.
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for a € a. Remember that the opposite coproduct was defined as A°® = P A P. The analogy
between the group product f and the coproduct A is underlined by the fact that the above
Hopf algebra a is cocommutative iff the group G is abelian. In the above spirit, we can thus
understand the quantization of a Hopf algebra as the replacement of a cocommutative coproduct
by a non-cocommutative coproduct. This is in close analogy to the transition from classical to
quantum mechanics, where a commutative product is replaced by a non-commutative one, e.g.
[z, p] = 0 goes to [Z,p] = ih.

Example: The universal enveloping algebra U[g]. Given a Lie algebra g, one can define
the universal enveloping algebra (UEA) a = U|g| as the quotient of the tensor algebra

T(g):ég(@":K@g@(g@)g)@(g@g@g)@... (3.64)

by the elements a ® b — b ® a — [a,b] for a,b € g. Here K is the field associated to the Lie
algebra g. Hence, the UEA may be considered as the space of polynomials of elements of g
modulo the commutator, i.e. for our Lie algebra generators the combination J, ® J, — J, ® J, is
identified with f,p.J.. The UEA can be equipped with a Hopf algebra structure by defining

Ala) =a®1+1®a, s(a) = —a, €(a) =0, (3.65)

for a € g which naturally extends to Ulg]. Note that this coproduct is cocommutative, i.e.
invariant under exchanging the factors on the left and right hand side of ®, which is consistent
with our idea of an un-quantized, i.e. classical algebra.

Quantum groups. The term quantum group introduced by Drinfel’d is generically employed
to refer to a deformed algebraic structure. This deformation is typically parametrized by a
deformation parameter which we call & to remind of the physical quantum deformation of
classical mechanics: [z, p] = 0 — [#, p] = th. In particular, the name quantum group does often
not refer to a group in the ordinary mathematical sense. Here we will understand quantum
groups as special examples of Hopf algebras,** namely quantizations Up[g] of the universal
enveloping algebra Ulg| of an underlying algebra g. In accordance with the relation between
classical and quantum mechanics, this quantization goes along with replacing a cocommutative
coproduct by a non-cocommutative one.

Example: U,[sl(2)]. Consider the example of the Lie algebra g = s((2) (cf. e.g. [54]) with
generators X1 X~ and H obeying

(Xt X7 |=4H, [H, X*] = +£2X*, (3.66)

Based on this algebra, we may define the universal enveloping algebra Uls[(2)] as introduced
above. Then the primitive coproduct

AX)=XT@14+10X"T, AX )=X ®@1+10X ", AH)=H®1+1H, (3.67)

may be understood as an algebra homomorphism on the universal enveloping algebra U[s[(2)].
A deformation Uy[sl(2)] of the universal enveloping algebra is induced by deforming the above
commutation relations or structure constants, respectively, to

ehH _ o—hH . .

32Gtrictly speaking quantum groups are rather dual (but equivalent) to Hopf algebras, but this distinction is
often not made. See for instance [59] for some explicit discussions.
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Note that in the classical limit 7 — 0 we obtain the undeformed algebra (3.66):

ohH _ ,—hH

lim——— = . (3.69)

a0 el — e h

The non-cocommutative coproduct for the three types of generators takes the form
AXT) =Xt @ +10XT, AXT)=X"@l+e Mo X, (3.70)

and
A(H)=H®1+1®H. (3.71)

For h — 0 the coproduct is the primitive one (3.67), which is cocommutative.

Quasitriangular Hopf algebras and universal R-matrix. Let us briefly introduce some
further important concepts related to integrable models and the Yangian. A Hopf algebra a is
called almost cocommutative, if an element R € a ® a exists such that

A®(a) = RA(a)R ™, (3.72)

for all a € a, where A°® = P A P. That is if the opposite coproduct A°? and the coproduct A
are similar. Comparing (3.72) to (3.27) we see that this is not the case for the Yangian (see
below paragraph). An almost cocommutative Hopf algebra (a, R) is called quasitriangular if

(A®1)(R) = Ri3Ras, (L1 ®A)(R) = RizRio. (3.73)

If a is quasitriangular, the element R is called the universal R-matriz of (a, R). The universal
R-matrix of a quasi-triangular Hopf algebra satisfies the quantum Yang—Baxter equation as well
as the relation

(s@1)(R)=R'=(1as")(R), (3.74)

where s denotes the antipode. The property (3.74) is important for physical applications since
it represents the crossing relation when R is given by a scattering matrix with Hopf algebra
symmetry, cf. e.g. [28]. For completeness let us mention that a quasi-triangular Hopf algebra is
called triangular if R1oRo = 1.

The Yangian as a Hopf algebra and quantum group. The Yangian defined above is a
Hopf algebra with the coproduct (we may set h = 1)

A(Je) = Ja @ 1+1®J,, A =Ja @1 +1®J, — Lifunedy © Je. (3.75)
The antipode acts on the generators according to
s(Ja) = —Ja, s(Ja) = —Ja+ Lhfuedse, (3.76)
and the counit acts trivially as®?
e(J,) =0, e(J,) =0. (3.77)

The Yangian is not quasitriangular since the pseudo-universal operator R of the Yangian is
not an element of Y[g] ® Y[g]. This requires the introduction of the above boost automorphism

33For simple Lie algebras g one can rewrite fupeJpJe = %CJQ with C being the quadratic Casimir of g in the
adjoint representation.
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(3.24), and (3.27) represents the pseudo-triangularity condition analogous to (3.72) for the
quasitriangular case. Alternatively one could consider the so-called Yangian double which
possesses a universal R-matrix, see e.g. [54].

On the level of the abstract algebra, the evaluation representation (3.51) discussed above
may be induced by an evaluation homomorphism from the Yangian to the universal enveloping
algebra

~

ev, : Y[gl — Ulg], evu(Ja) = Jg, evy(Ja) = uld,. (3.78)

This homomorphism, however, turns out to exist only for g = sl(2), while it takes a more
complicated form for s((N) with N > 2 and does not exist for symmetry algebras of type
different from ay (in the Dynkin classification of simple Lie groups) [54].

The Yangian is a quantum deformation of what? The Yangian is a deformation of the
UEA of the so-called polynomial algebra glu]. Given a Lie algebra g, the polynomial algebra
glu] is defined as the space of polynomials in u with values in g. This means that glu| is
spanned by monomials of the form J¢ = «"J* with n = 0,...,00. The simplest way to construct
representations of the polynomial algebra is via the evaluation homomorphism

evy : glu] — g, (3.79)

which evaluates a polynomial at a fixed point u € C. The evaluation homomorphism of the
Yangian algebra discussed above represents the quantum generalization of this map. Taking
h — 0 in the defining relations of the Yangian, one obtains the UEA of glu| with the correct
Hopf structure (3.65).

“By the way, we are lucky that Y[g] is pseudo-triangular and not triangular: otherwise
Y [g] would be isomorphic (as an algebra) to a universal enveloping algebra and life
would be dull.” V. Drinfel’d 1986 [5]

3.3 Second and Third Realization

While these lectures put more weight on the original, first realization and its connection to
physical systems, it should be emphasized, that further notable realizations of the Yangian
algebra exist and were discussed by Drinfel’d. In the context of physical systems, in particular
the third, so-called RTT realization establishes a connection to earlier work on integrability and
the quantum inverse scattering method, see also Section 5.

3.3.1 Second Realization

In 1988 Drinfel’d introduced a new realization of the Yangian that will be briefly discussed in
this subsection. Drinfel’d’s motivation for studying this new realization was some shortcomings
of the first realization:

“Unfortunately, the realization given in [7] and [5] of Yangians and quantized affine
algebras®® is not suitable for the study of finite-dimensional representations of these
algebras.” V. Drinfel’d 1988 [6]

34Here Drinfel’d refers to the quantum algebras that take a similar role for trigonometric solutions to the
Yang—Baxter equation as the Yangian for rational solutions.
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The new realization of the Yangian given below can be used to demonstrate a one-to-one
correspondence between irreducible finite-dimensional representations of the Yangian and sets of
polynomials [6]. While this correspondence proves useful for studying Yangian representations,
it is beyond the scope of these lectures.

The second realization is particularly interesting since it specifies the defining relations for
all generators as opposed to the first realization. This is important for the construction of a
universal R-matrix of the so-called Yangian double.

In order to understand the approach towards this new realization of the Yangian, let us first
get some inspiration from ordinary Lie algebras.

Semisimple Lie algebras. Due to Serre, every finite dimensional semisimple Lie algebra can
be represented in terms of a Chevalley basis of generators. More explicitly, an n x n Cartan
matrix A = (a;;) and a set of 3n generators {X;, H;}?_, which satisfy the Serre relations,
uniquely define a semisimple Lie algebra g of rank n. The generators obey the commutation
relations (here [, -] denotes the Lie bracket)

[H;, H;] =0, [H;, X}'] = +a; X, (X;H, X[] =6 Hj, (3.80)
as well as the Serre relations
i F ] ad(X;7)' 7% (X5) = [ X5, [X;, . [X, X)) = 0. (3.81)

Note that the H; generate a Cartan subalgebra of g. The simplest example with n = 1 is a
one-dimensional Cartan matrix (element) A = aj; = 2 such that the above relations yield the
well known commutation relations of s((2):

[H, X*] = £2X7, Xt X |=H. (3.82)

One example for infinite dimensional generalizations of semisimple Lie algebras generated in
this way are the Kac—-Moody algebras. Another example can be defined as follows.

Chevalley—Serre realization of the Yangian. In [6] Drinfeld introduced a second realiza-
tion of the Yangian that follows the above Chevalley—Serre pattern.

\
Second Realization. The algebra ¢ defined in the following way is isomorphic to Y[g].

Given a simple Lie algebra g with inner product (-, -), the associative algebra ¢ with
generators x5, and hy, is defined by the relations (here [ -, -] denotes the commutator in c)
[h'ik’a hjl] = 0, [hio, ZL’;‘;] = :I:aija:;tl, [Z’:l;, I']_l] = 5ijhi,k+l (383)
and
[hi,k—i-l; xﬁ] - [hikza ﬂffzﬂ] = i%@ij(hikl“;tl + xjilhik)7 (3-84)
[ @l = [ w5 = Fg0 (g + a5a), (3.85)
as well as
i#j m=1—a; = Sym{k}[a:iikl, [xiz, . [x;im, xjﬂ] ...]=0. (3.86)
Here A = (a;;) denotes the Cartan matriz of g. The indices i, j run over 1, ... rank(g) and
k,l=1,2,.... Furthermore Symg,, denotes symmetrization in ki,. .., ky with weight 1.
o _/
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Let {H;, X} denote a Chevalley-Serre basis of the Lie algebra g with H; and )?ii representing
the level-one generators introduced in the context of the first realization. Then Drinfel’d’s
isomorphism ¢ between the Yangian and the algebra ¢ takes the form

¢(H;) = hio, P(X5") = 2y, e(Xi) =z, (3.87)
o(H;) = hay + ¢(vy), P(X]) = 2l + p(wy), P(X7) =25 + o(2), (3.88)

with
v; = —I—i Z(oz, a;)(€ab_o +e_nes) — %H?, (3.89)
w; =+ (X" eale—a + e—alX;" €a]) — H(X;TH; + H X, (3.90)
5= =3 ) (X7 ecalea +eal X7 ema]) = 3 (X7 Hi + HiX)). (3.91)

(67

Here a runs over all positive roots and the e’s denote the generators of the Cartan-Weyl basis.

Drinfel’d furthermore noted that if the right hand side of (3.84) and (3.85) is set to zero
(which corresponds to the classical limit), then the algebra ¢ is isomorphic to the universal
enveloping algebra U[g[u]] with an isomorphism of the structure

hae +— HyuP, x e Xk T X (3.92)

An explicit expression for the coproduct of the second realization is not known. The boost
autmorphism in this realization is given by [54]

Bu(hiy) = <T> U0 Ry, Bu(zi,) = (7") T (3.93)
s=0 \¥ ' s—=0 \S ’
Notably, one may modify the above definition of the Yangian employing only a finite number
of the generators of the second realization, a result due to Levendorskiz [60].
3.3.2 Third Realization

We will now consider a third realization of the Yangian that was implicitly studied by the
Leningrad school [61] before Drinfel’d’s seminal papers. Drinfel’d himself made the connection
to the earlier work explicit:

“Finally, I am going to mention a realization of Y'[g] which is often useful and which
appeared much earlier than the general definition of Y[g].” V. Drinfel’d 1986 [5]

In particular, this realization establishes the connection to the fundamental equations underlying
the algebraic Bethe Ansatz [29)].
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Figure 3: Illustration of the RTT-relations.

/RTT Realization. Fiz a nontrivial irreducible representation of the Yangian p : Y|[g] —>\
Mat(n,C). Let furthermore R(u) = (p®p)(R(u)), where R(u) denotes the rational solution
to the Yang-Bagzter equation given in (3.25). Define a Hopf algebra a, by the RTT-relations

Rio(u —v)T1(u)Te(v) = To(v) Ty (u)Ryz(u — v). (3.94)
Here, denoting the n x n identity matriz by 1, we have
Ti(u) = T(u) ® 1, Ty(v) =1®T(v), (3.95)

and with T(u) = Y,53t°s(w)E” and 1 < o, < N the Laurent expansion of the matriz
elements t*g(u) takes the form

k)\a

u)=5a+im (3.96)

’ oout '
The Hopf algebra a, is generated by the operators (t(k))aﬁ withk =1,2,... and the coproduct
Z t(u) @ t75(u). (3.97)

One has an epimorphism (surjection) a, — Y[g] defined by T'(u) — (1 ®p)(R(u)), where
the expansion of R in terms of the generators in the first realization was given by (5.28):

! - A |
log R(w) = 1o ® Ja+ —5(Ja @ Ju = Ja ® ) + (9(u3> (3.98)

To obtain Yg| from a, (i.e. to define a bijection), one generically has to add an auziliary
relation of the form

clu) =1, (3.99)
Kwhere Ac(u)) = c(u) @ c(u) and such that [a,c(u)] =0, for all a € a,. /

Note that this realization makes explicit reference to a representation p from the start as opposed
to the previous two realizations. The above RTT-relations (3.94) follow from the Yang-Baxter
equation (3.5) if we identify R;3(u) with T;(u) = Tis(u) and set v = uy, v = uy and uz = 0.
The RTT-relations relate the products Ty (u)T2(v) and Ty(v)T;(u) to each other and can thus
be considered as generalized commutation relations defining the operator T based on a solution
R of the Yang-Baxter equation.
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Example 1. Let us consider the most studied example of this realization, namely the case of
g = gl(N) with fundamental generators p(J%5) = E%5 and Yang’s R-matrix:

P

)
u—v

R(u—v) =1+ (3.100)
where P = Zg =1 B ® E.” again denotes the permutation operator alias the quadratic tensor

Casimir operator. We closely follow the lines of [62] which contains an extensive discussion of
the RTT-realization for gl(N). We expand T(u) = Y ,5t%s(u)E," as well as (3.94) using that

(Tw) @ DA T(v) = > t*%(w)t"s(v)ES ® E?, (3.101)
a,B,7,0

(1 @T(v))(T(u = > 1( W E,” ® B, (3.102)
a,B,7,0

Applying both sides of the RT'T-relations to a basis vector eg ® es € CY @ CV one finds on the
left hand side

Z t%s( v)e, @ ey — v)ey ® eq, (3.103)
and on the right hand side
Z t7s( u)e, ® ey — Z t75( u)ey @ es. (3.104)

U—v
Multiplication by u — v and equating the coefficients of independent basis elements e, ® e,
yields
(u = 0)[t%s(u), t75(v)] = t75(u)t*5(v) — 17 5(0)t"5 (). (3.105)
Expanding as in (3.96) then gives
[(#7F) %, (1O)7s) = [(17) 5, (1Y) 5] = (1) 75(19) 5 — (1)) (1) %, (3.106)

for r,s = 0,1,... and (t)*5 = §3. The relations (3.106) may be taken as an alternative

definition of the Yangian algebra spanned by (¢))®5. In particular, one typically has the
following relation to the Yangian generators in the first realization:3

(t0)%5 = J* (1) (t@)g 2 T (1) + .., (3.107)

where the dots stand for lower-level generators or the identity, cf. [63].

Example 2. Notably, in the above example we did not require the auxiliary map c(u) of
(3.99). Let us thus also consider another example with g = sl(/N) where this map is required,
c.f. [6]. Then Yg| is isomorphic to the algebra a, defined by the relations

<1+U]EU>T1(U)T2(U):TQ(U)Tl(u)<1L+ P > (3.108)

u—v

and the auxiliary constraint equation

c(u) = detq T(u) = 1. (3.109)

35See Section 5.1 for an expansion of the monodromy T(u) in the context of spin chains.
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Here P denotes again the permutation operator and the so-called quantum determinant is

defined as [64]
-1 — 1—
n )t2a2 (u+” > 3) ot (u+2”) (3.110)

detq T(u) = > sign(ai,...,an)t'a, <
Perm(ai,...,an)
where the sum runs over permutations of (a,...,a,) with values in 1,... ,n. Note that here
R(u) takes again the form of Yang’s R-matrix. In the above sense, the Yangian algebra for s[(V)
(Example 2) is given by the Yangian of gl(N) (Example 1) modulo the quantum determinant
relation (3.109).

4 Quantum Nonlocal Charges and Yangian Symmetry
in 2d Field Theory

In this section we will rediscover some of the concepts learned about Yangian symmetry in the
last chapter. In particular, we will discuss Drinfel’d’s first realization.

4.1 Quantum Nonlocal Charges alias Yangian Symmetry

Let us start by noting a crucial difference to the case of classical charges considered in Section 2.
In a quantum field theory, the product of two operators O;(z)Os(y) is typically divergent in
the limit x — y. That this is a priori a problem in the context of nonlocal symmetries becomes

immediately clear when looking at the classical bilocal current:°

(jclassical)g($) = Euujau(z) - %fabc / dng(x)jg(y) (41)

The current contains the product j'(z);°(y) and since y is integrated up to x, the problem
is apparent. In order to get control over the divergencies, it is useful to employ the so-called
point-splitting regularization, i.e. to split the point x into two points z and x — §. Then the
short-distance singularities of the product O;(x)Os(z — §) can be extracted as the coefficients
in the expansion around § = 0. Below we will use this point-splitting regularization in order
to define a quantum bilocal current, but first we have to understand the singularities of the
current product a bit better.

In general, the question for the behavior of the product of currents in the limit x — y is
addressed by the operator product expansion (OPE) which takes the form

favedp () Z D (2)0%(0 (4.2)

Here the fu. denote again the structure constants of an internal semi-simple Lie algebra
symmetry g with level-zero charges J, induced by the local currents which obey

[Ja, Jb} = Nfachc- fabcfbcd = _C(Sad- (43)

We have introduced a (possibly coupling-dependent) normalization A" and the adjoint Casimir C.
Note that understanding the OPE also furnishes a quantum analogue of the classical flatness
condition with a proper normal ordering prescription:®”

o0gy — 0vGe + Fabe : jois = 0. (4.4)

36We assume that the classical conservation of the current is not broken by quantum anomalies. The breaking
of symmetries at the quantum level may occur if the symmetry is a symmetry of the action but not of the
measure of the path integral.

3TCf. the appendix of [65].
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Liischer’s theorem. In general, the OPE can be studied by exploiting the fact that both
sides of equation (4.2) have to obey the same symmetries and carry the same quantum numbers.
With the aim to quantize the definition of the bilocal current 3,“ we follow [36,11,65] and try to
understand what can be said about the operator product (4.2) if one makes the following set of
assumptions for the two-dimensional quantum field theory under consideration:

e The theory is renormalizable (to have a well-defined OPE) and asymptotically free (which
determines the scaling behavior of ¢{f)(x)).

The theory has a local conserved current jj.

There is only one operator of dimension smaller than 2 that transforms under the adjoint
representation of g, namely the conserved current j;(z) (and derivatives thereof).

Both sides of (4.2) obey C, P, T and Lorentz symmetry.*®

The current commutes with itself when evaluated at different points with spacelike
separation (locality).

Under these assumptions it was shown that the most general form of the above OPE is given
by [36,11,65]
favedn(@)75(0) = ¢4, (2)75(0) + d5t(x)Da35 (0), (4.5)

with the below specifications on the OPE coefficient functions. In order to see that this behavior
is compatible with the charge algebra (4.3), one considers the equal time commutator:

Farl1202). 5O = it Fone [, ~i0)JE(0) = (. 10)JE(0)]- (46)
Evaluating the OPE at —z? — € and with the normalization A entering by [65]

fabc[jg(l‘)aj;i(o)]e.t. == —Nca(x)ja,u(o)a (47)

one finds an expansion that sometimes goes under the name Liischer’s theorem [36,11,65]:*

) n,uuxp x(ﬂ(sz//)) $ﬂ$yxp

chy(T) = al(x)7 + as(x) poaR as(x) T (4.8)
o bi(x) Tpa’0)) + w0y by(x) x°

dop(x) = — L O 4 e, (@), (4.9)

Here all coefficient functions ay, b, depend on z only via the Lorentz-invariant 22 and are of
order O(|z|™°) due to the asymptotic freedom of the theory.”’ Furthermore the parameter
functions depend on the normalization A, the Casimir C and on one model-dependent function
&(z) which is a function of log(u2x?), where 1 denotes a mass scale. Using the above assumptions
one can derive many constraints on the parameter functions. Current conservation translated
into O%cf,, = 0 and 9"df, = 0 for example implies several differential equations [36,65,66], e.g.

att =0: q
ar(x) = ~2u [b1(2) = ba()]. (4.10)

38Here we assume that the theory has a C operation. See [65] for a discussion of its properties in this context.

39Liischer derived this form of the current product for the case of the non-linear sigma model [36], while
Bernard obtained similar constraints for the massive current algebras in two dimensions [11]. A nice general
discussion is given in [65].

40The notation O(|z|~") denotes possible logarithmic terms.
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Evaluating all these constraints yields the relations [36,65]

ar(z) = =2by(z) — by () + /;/;TC’ as(x) = by(z) — J;;C) as(x) = 2by(x) — 2by(z),  (4.11)
as well as
=)+ 5° b = E(0) + 6(0) — B (1.2

where the dot denotes the derivative with respect to log(u%z?).

Quantum bilocal current. We may now introduce the point-split version of the nonlocal
current as

z—48
Tt 210) = 200 b, ) — et ) [ 200, (4.13)

where Z(0) denotes a renormalization constant that has to be determined. The quantized bilocal
current is defined as the limit [36, 11]

it ) = lim JA(t, 219). (4.14)

This current is finite and conserved only for a particular choice of the renormalization constant
Z(6). To understand the divergence, we evaluate the relevant contributions to the product jojo
using (4.5):

xP o 2P 1
coo() = al(w)ﬁ + 2as(x )* +az(z)— p = al(l‘)fﬁ);»
df(x) = Sa7chy(x) = ay(x)of6. (4.15)

This indicates that the origin of the divergence for x — 0 lies in the term proportional to a;(z)
in the first line. The bilocal level-one charge is given by

- / dz 7°(t, z|9), (4.16)
and the divergent part has the form (cf. [66])
00 00 z—48 a (1‘ _ y)
) [ i) 3 [ ar [ ay® =By, (4.17)

Now we may use (4.10) to rewrite this as

) [ v+ [ it | dy 3, (o= ) = balo — )]

y=x—0

y=—00

5) 7(19]1 / dx]l bl x— )—b2($—y)]
6) jdyjl(y) + — by(6 / dz ji (z (4.18)
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Note that b;(d) and by(d) are divergent for § — 0 and that the terms proportional to +b;(x +
00) —ba(2+00) should be finite by the conditions on the conserved local current at the boundaries
of space. The renormalization constant Z(d) is determined by requiring that the bilocal current
is finite in the limit 6 — 0 and thus

Z(8) = b(8) — b (8) = 26(8) +£(5) — — (4.19)

Similarly one may show that the quantum bilocal charge induced by the current (4.14) is
conserved under the above assumptions [36,65].

Quantum monodromy and Lax formulation. As seen in the classical case, the existence
of nonlocal charges in principle allows to define a conserved generating function. For a large
class of models, in [42] the quantum analogue of the monodromy matrix T(u) was constructed
directly on asymptotic particle states under the following assumptions:

e A quantum operator T(u) exists and is conserved.
e T(u) satisfies a quantum factorization principle (the RTT relations).
e The discrete parity and time-reversal symmetries are realized in the quantum theory.

Since the monodromy matrix T(u) provides a generating function for the nonlocal conserved
charges, it furnishes an alternative way to study the symmetry constraints on observables such
as the scattering matrix. However, we will not discuss this in more detail here.

Chiral Gross—Neveu Model. The chiral Gross—Neveu model represents a renormalizable
and asymptotically free theory with the symmetry properties assumed above. We may thus
apply the quantization procedure to the bilocal current. In order to explicitly compute the OPE
expansion, one may insert the current product fup. jZ jo into correlation functions that can be
perturbatively evaluated and regularized by ordinary field theory methods. The model-dependent
function £(x) is given by [65]

§(x) = 5 log(p*?), (4.20)

and thus the renormalization constant evaluates to
NC _ N _
2(8) = 5~ log(?6°) + O(|8]'™") = g*—log(p*6°) + O(|8]' ™). (4.21)
Here we assume the normalization to scale as N ~ ¢* and the generators of su(N) to be

normalized such that the adjoint Casimir goes as C ~ N. The quantum currents for the chiral
Gross—Neveu model thus take the form given in [42]:

L= [, 3= [Z(6>7dxj;<x>—;776dxdy[j°<x>,j°<yna. (1.22)

Above the generated mass scale u = %me"’E is related to the mass m of the fundamental fermions
of the chiral Gross-Neveu model and ~g denotes the Euler constant.
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Figure 4: Contour I, _s defining the level-one current.

4.2 Boost Automorphism

Let us understand in some more detail how the abstract mathematical concepts underlying the
Yangian algebra are realized in physical theories. We will see that this Hopf algebra in fact
circumvents some naive expectations on the symmetry structure of physical observables:

“We prove a new theorem on the impossibility of combining spacetime and internal
symmetries in any but a trivial way.” S. Coleman and J. Mandula 1967 [10]*!

Under a finite Lorentz transformation, the local current transforms according to
U(A)j*(@)U(A) " = A%, 5" (Az), (4.23)

with
.y (cosh(u) sinh(u)
(A%) = <sinh(u) cosh(u)) ' (4.24)

From this one can read off the following vector transformation rule under the boost generator
B = C%U(A”u:O‘
(B, i (x)] = €,52" 0% jE () + €' o0 (). (4.25)

For the transformation of the local charge this straightforwardly implies
B,J. =0, (4.26)

if jo(£o00) = 0.

Level-one charges and contours. In order to understand the transformation behavior of
the bilocal level-one current we use a nice geometric argument of [11]. Note that instead of
integrating over the real axis, we may define the bilocal current via integration over a generic
contour I,_s that starts at —oo and ends at x — ¢, see Figure 4. This is possible since the
current defines a flat connection and thus the integration is path-independent. The bilocal
current then takes the form

(2, 116) = Z(O) jun(w.8) = Sfunedbw) [ oy J2(0). (4.27)

I'y_s

Here €,,dy” j7 represents the generalization of dy;j? when going away from ¢ = 0.

41 Apparently the assumptions of their famous theorem are not satisfied here. Nevertheless the Coleman—
Mandula theorem shows that it is by no means obvious that spacetime and internal symmetries can be nontrivially
related.
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Figure 5: Boost transformation of the contour I',_s by a rapidity u = 274 correspond-
ing to a Euclidean rotation.

One may now apply a Lorentz boost Bs,; by an imaginary rapidity 27¢ to this nonlocal
current. This boost corresponds to a Euclidean rotation by an angle 27. As illustrated in
Figure 5, the rotated current can be written in the original form with a contour I,_s ending at
the point x — § plus an integral around the point x over a closed contour ~,:

™8 ji(x,t|0) e ™ = jH(x,t|0) + § fabe f copdy” jy ()72 (y)- (4.28)
Y

We are interested in the implications of this transformation behaviour on the level-one charges.
Hence, we have to integrate the zero-component of the above expression over x. Then the last
integral picks up the residue of the OPE of the product of currents and we would have to make
an analysis similar to the one in Section 4.1, where we evaluated the generic structure of the
current OPE. We will not discuss this proof in more detail here but note that Bernard has
shown that [11]

e?miB jae—zmzs = ja - %CJ,I, (4.29)

with C representing the quadratic Casimir of g in the adjoint representation, i.e. —04,C = facafedp-
Comparing with the leading orders of the expansion

Bori = exp(2miB) = 1+ 2miB+ ..., (4.30)
one concludes that the conserved charges transform under the boost generator as*?
B,3.] =0 B3 = -y (4.32)
Y al] 9 J al] 471_2 a-* .

Notably, the nontriviality of the second commutator is a quantum effect (cf. (2.53)). It is
induced by the pole in the current OPE encircled by the contour in Figure 5. The operator
B, = exp(ul3) corresponds to a group-like finite boost transformation whereas the generator B
represents the algebra element whose primitive coproduct follows from the expansion

B.®B,=1®1+u(B®1+1&B)+ Ou?). (4.33)

Hence, the boost transformation couples the internal and spacetime symmetries to each other,
which implies that the quantized Yangian algebra is not merely an internal symmetry. It is

42Tn an alternative approach using form factors, the commutation relations with the boost operator were
obtained by first determining the commutator of the level-one charge with the energy momentum tensor for a
model with g = s[(2) [12]:

¢ (€uaOais () + €vaBajl(z)). (4.31)

3 T ()] = =

Integrating the 00-component one finds the relation (4.32) with the boost generator B = [ dz x Ty for ¢ = 0.
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conceivable that this yields stronger constraints on symmetry invariants than a direct product
of independent symmetry algebras. Note that the above boost tranformation on the conserved
charges exactly realizes the boost automorphism defined by Drinfel’d. Hence, the internal
level-zero and level-one charges J, and Ja together with the boost automorphism B, furnish the
defining relations of the Yangian algebra in the first realization as given in Section 3.1.

“Thus one concludes that the Yangian must actually be extended to include the Poincaré
algebra with generators B, P, in order to realize its full implications.” A. LeClair
and F.A. Smirnov 1991 [12]

4.3 Yangian Symmetry and the 2d S-matrix

In physics, symmetries are typically used as a guiding principle to construct new models and
to constrain their observables. Being an infinite-dimensional symmetry algebra, the Yangian
has strong implications for the spectrum and dynamics of a theory. In [67], Belavin showed
for instance that the spectrum of masses of a two-dimensional quantum field theory can be
computed via the Yangian symmetry. The prime example for the physical application of the
Yangian is the scattering matrix of massive, relativistic, two-dimensional quantum field theories.
The S-matrix is the operator that relates asymptotic particles to each other. Since particles
are defined by representations of symmetries (e.g. Poincaré symmetry), the scattering matrix is
constrained by these symmetries. In a theory with Yangian symmetry, particles also transform in
representations of the Yangian, which should thus be a symmetry of the S-matrix, cf. e.g. [12,68].

In order to study scattering processes in two dimensions, it is useful to consider lightcone
coordinates defined by

pt=p"+p, p-=p" -0, (4.34)
which can be expressed in terms of the often more convenient rapidities u by the relations

p" = mexp(+u), p- = mexp(—u). (4.35)

Here m denotes the particle mass. The two-dimensional momentum in the original coordinates
then takes the form
m cosh u
(p") = ( ) , (4.36)

m sinh u

which shows that the transformation v — —u inverts the direction of the particle’s movement.
The transformation v — im — u flips the sign of the particle’s energy and thus represents a
particle to antiparticle transformation. Importantly, the Lorentz boost acts additively on the
variables u (see below), which emphasizes their usefulness in the present context.

Poincaré symmetry and scattering states. We will now be interested in understanding
the impact of symmetries on the scattering in this theory. We consider the Poincaré algebra in
141 dimensions

[P+, P7] =0, [B,P*] = +P*, [B,P~]=—P~, (4.37)

where the single Lorentz transformation in two dimensions is generated by the boost B and P+
denotes translations into the lightcone directions. In order to study the scattering of different
particle species moving in one space dimension, we look at asymptotic scattering states. For
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one single particle of type « this state is denoted by |a, u). In the chiral Gross—Neveu model for
instance, it takes the form (with p; = p1(u)) [42]

NI

o, u) = (pf +m?)3 bl (p1) |0) (4.38)

where by, bl are oscillators that appear in the Fourier decomposition of the fundamental fermions.
Note that the Lorentz boost can be realized on one-particle states (on-shell) as

0
B |Oé, U’> = % |aa U) ) (439)
and a finite boost transformation B, = exp(vB) acts on a one-particle state by a shift of the
rapidity:
B, |a,u) = |a,u+ v) . (4.40)

The energy-momentum generators act on one-particle states as
PT o, u) =me™™|a,u), P o, u) =me ™ |a,u). (4.41)

In order to study the scattering of multiple particles, we need a notion of multi-particle scattering
states. Importantly, the fact that the space is one-dimensional allows to order particles (i.e.
wave-packets) with respect to their position. It is thus natural to label the particles 1,...,n
according to their space coordinate z; < --- < x,. However, only if the fastest particle of
the incoming multi-particle state is on the very left, it can cross all other particle trajectories.
Thus, in order to have a nontrivial n-particle scattering process, the particle rapidities uy in
the in-state have to have the opposite ordering as compared to the positions, i.e. uy > -+ > u,.
After the scattering process, the situation is reversed, and the particles in the out-state with
positions #] < --- < 2], have rapidities ordered as u} < --- < u;,. This motivates to introduce

the following ordered multi-particle states with rapidities ordered as u; > -+ - > u,,:*
lar, ur; sy U T < Ty < v+ < Ty, (4.42)
|B1su1s .5 By Un) gyt - Ty > Ty > e > Ty (4.43)

In fact, the scattering matrix in 1+1 dimensions is defined as the operator that expresses an
out-state in the infinite future, in the in-state basis in the infinite past, or vice versa. We
assume that the scattering process preserves the number of particles as well as the individual
rapidities, as is the case in integrable theories in two dimensions.** Then the S-matrix acts on
the asymptotic states as

g, ;e Oy ) = SO P (g ) [ B s B Un o - (4.44)

Note that the above definition of in- and out-states implies that the coproduct acts differently
on the two bases. This serves as a motivation to introduce the notion of opposite coproduct for
the permuted coproduct (3.18), which enters the below symmetry equation for the S-matrix.
The action of the above Poincaré generators on one-particle states generalizes to multi-particle
states via the primitive coproduct

APH =P'@1+1@P", AP )=P @1+1xP", AB)=B1+1xB. (4.45)

43The different ordering of positions corresponds to different orders of the operators generating the individual
particles from the vaccuum, cf. (4.38). In fact, the S-matrix theory can be formulated in terms of such operators
spanning the so-called Zamolodchikov—-Faddeev algebra.

44 Also this can be shown using the Yangian structure of the S-matrix but we do not discuss this here.
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Yangian symmetry and scattering states. Suppose now that in addition to the above
Poincaré symmetry, the underlying theory features a Yangian extension Y'[g] of an internal
symmetry algebra g. Most of the commutators between the spacetime and internal symmetries
vanish, but as seen above, the boost operator has nontrivial commutation relations with the
Yangian level-one generators:

~ ~ h
[P=,J,] =0, [P=,J,] =0, 1B,J.] =0, (B, Jo] = =C—Ja,. (4.46)

i
Thus the Lorentz boost furnishes the boost automorphism of the Yangian algebra. The above
relations imply that the one-particle states transform in an evaluation representation of the

Yangian:

pﬁ(‘Lz) |u> = pO(Ja) |u> ’ pﬁ(ja) |u> = ap()(‘Lz) |u> : (447)

Here py again denotes a representation of the generators of our symmetry algebra acting on the
particle labels a, 3, ... (cf. (3.49)) and @ equals the rapidity w up to a constant:

hC
A 4.48
= 47mu ( )

The compatibility of this representation with the boost commutator in (4.46) can be seen by
evaluating

hC

p([Bv ja]) |u> = [aupO(ja) - pO(ja)au} |U> 4 pO( a) |u> : (449)
or alternatively (cf. (3.24))*
By(3.) 1) = BT o5 Ju) = (ja _ ffz av) Y (4.50)

where the expansion of exp (vB) yields only finitely many terms since [B, J,] = 0. In order to
study the implications of the symmetry on the scattering matrix, we note that the conserved
charges are time-independent and are thus the same on incoming and outgoing states, e.g. for
the level-one charge [36]:

ja = tLiI}looj?n( ) - hm ‘]out( ) (451)

The action on multiparticle states is defined by the coproduct. Each particle transforms with a
different evaluation parameter u; such that we find

pa(Ja) lut, -y un) in = po(Jap) [ur, -+ tn) in (4.52)

out —1 out

paIa) s )iy = (3 o) & Bave 3 ldpodes)) )

out 1<i<j<n out

E

where we have dropped the particle flavors for simplicity of the expression. The different
signs + arise from the application of the different coproducts A or A° to the out- or in-state,
respectively.

45Note that B, acts on an operator by conjugation with exp (v13).
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Constraints on the S-matrix. We would like to understand the two-particle S-matrix,
which typically serves as the fundamental building block for integrable scattering matrices in
two dimensions:

vy, Uy g, )y, = Sﬁiﬁi (w1, ug) |Br, ur; Ba, Ua) oy - (4.53)
Lorentz symmetry is the statement [B® 1+ 1 ® B, S(uy, us)] = 0, or explicitly
0 0
—S — =0 4.54
aul (u17u2) + aUQ (Ul,UQ) 9 ( )

which is solved by S(uy, us) = S(u; — ug). This is equivalent to saying that the two-particle
S-matrix may only depend on the Mandelstam variable (p; + p2)? = 4m? cosh?(“15%2).

Let us emphasize that the scattering matrix is the operator that relates the in- and out-
representation in a scattering process:

) =S]) (4.55)

The out- and in-representations transform under different coproducts, namely under A and A°P
(cf. (3.18) and the definition of multi-particle states (4.42)) and hence, the internal symmetry
of the theory implies that the S-matrix furnishes an intertwiner for the Yangian evaluation
modules:*®

p(Bi ® Bi(A™(a)))S(u — v) = S(u — v)p(Bs @ Bi(A(a))), (4.57)

for all @ € Y[g]. In order to remember the explicit relation of the boost to the evaluation
representation, we consider again the two-particle expressions for the level-zero and level-one
generators:

B, @ By(A(J,)) =J, @ 1 +1®J,. (4.58)
B, ®B,(A(J,) =Ja @ 1+1®J, +u(J, @ 1) + v(1®J,) — L fuedy @ J.. (4.59)

Notably, (4.57) represents (3.27) realized on the scattering matrix. For the level-zero and
level-one generators we therefore have via (3.32) and (3.33) of Theorem 2, and using the
representation (3.49):

0= [p<Ja> ®]l+]l®p<<]a>7s(u1 —Ug)], (460)
0 = (po @ po) (Ba ® Bs(A(Ja)))S(u = v) — S(u = v)(po @ po) (Ba ® Bo(A(Ja))).  (4.61)

We thus conclude, that the above constraints following from Yangian symmetry imply that
the two-particle scattering matrix in our 1+1 dimensional field theory satisfies the quantum
Yang-Baxter equation

812(U12)813 (U13)Sz3 (U23) = Sg3 (U23)813(U13)812 (Ulz), (4-62)

which allows to consistently factorize multi-particle scattering into two-particle S-matrices. This
property represents the hallmark of an integrable theory in two dimensions. As an explicit
example, we have considered the solution (3.41) to the above constraint equations for Y[su(2)].
In order to fix the scalar prefactor of the S-matrix, one has to impose further symmetry properties
such as crossing and unitarity which also follow from the Yangian Hopf algebra, but which will
not be discussed here in further detail. For a more detailed discussion of the S-matrix see for
instance [70, 28].

16Sometimes the matrix S = PS is called S-matrix, for which this condition becomes (see e.g. [69])

p(Bs ® Bﬂ(A(CL)))é(U —v) =S(u— v)p(Ba @ By (A(a))). (4.56)
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5 Spin Chains and Discrete Yangian Symmetry

As opposed to the continuous theories discussed above, Yangian symmetry also plays an
important role in 141 dimensional models with a discrete space dimension. This chapter is
concerned with such models on a one-dimensional lattice which are called spin chains. Many
of the features of the Yangian have a discrete nature (e.g. the coproduct) or take over to the
discrete case by replacing continuous integrals over space by discrete sums. On the other hand
there are important differences to the continuous field theories. Depending on your background,
spin chains may often be the most accessible framework to discuss Yangian symmetry.

Spin chains and local charges. From quantum mechanics the spin associated to the algebra
g = su(2) is well-known. For the case of spin % for instance, the spin can be considered as a
vector space that transforms under the fundamental representation of su(2). It may take the
orientations up |1) or down ||).

We consider a (generalized) spin as a vector space V that transforms under some representa-
tion of a symmetry algebra g. Now we may go further and form chains of spins. We define such
spin chains as physical models on a Hilbert space H, which is a tensor product of the above
vector spaces:

H=... 9V, @V 1 9Vio®.... (5.1)

Here we will assume that all vector spaces are identical V, = V. The index k labels the position
or site of the spin chain and the positions £ and k + 1 are called nearest neighbors. The chain
may have different boundary conditions, e.g. periodic, open, infinite or semi-infinite boundary
conditions, which we leave unspecified for the moment. We will briefly discuss different boundary
conditions and Yangian symmetry in Section 5.2.

The spin chain Hilbert space H is spanned by states for which the spin at each position k
has a fixed orientation v, where v, denotes a basis vector of V:

|"'7vk:avk+1avk+27"‘> € H. (52)

A physical model is typically defined by a local Hamiltonian H, whose density acts on two
neighboring sites or so-called nearest neighbors. In the case of integrable spin chains, one finds a
set of integrable charges or higher Hamiltonians Q,,, with the first charge given by the two-site
or nearest-neighbor Hamiltonian H = Q5. The integrability of the model is reflected in the fact
that all of the charges mutually commute:

(O, Qn] =0, m,n=23,.... (5.3)

These charge operators usually act locally and homogeneously on spin chains; this means that
their density acts merely on a small number of neighboring sites and the form of the interaction
encoded in the density 9, = 9, (k) does not depend on the position k, respectively. We will
focus on such charge operators being invariant under the symmetry g and acting on the spin
chain as

Qn = Z Qn,k; Qn,k : Vk ®...8 Viﬁﬂlfl — Vk ®...0 Vk+n*1' (54)
k

Here the density 9, is a linear operator which acts on several consecutive spins starting with
site k, cf. Figure 6. The number n of interacting sites is called the interaction range of the
operator Q,,. For most ordinary spin chains the charges are labelled such that the interaction
range of Q,, is indeed n.
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Figure 6: A local charge operator Q,, acting on a spin chain (here n = 4). Its position
k on the chain is summed over, see (5.4).

A simple example for an integrable spin chain model is the Heisenberg or XXX 1 spin chain’
with g = su(2) symmetry. Its Hamiltonian is given by the local operator

Hxxx = > Hip1 =52 (1i @ Lpp1 —0f @ 0 y) = ) (5.5)
k K k

k k+1

with of denoting the Pauli matrices acting on site k& of the spin chain. Alternatively, the
Hamiltonian can be expressed in terms of the permutation operator using again that the tensor
Casimir of u(2) takes the form Py ;11 = %(]lk ® L1 +0f @ 0 ):

Hyxx = Y (Lipt1 — Prjptr)- (5.6)
%

It is convenient to introduce an even more compact notation by writing Hxxx = [1,2] — [2, 1].
This square bracket notation straightforwardly generalizes to permutations of higher range:

[&1,612, e ,Cl@] ‘Xl,XQ, e 7XL> = Z ‘Xl, Ce 7X]€’Xk+a1’ Ce 7Xk+an>Xk+€+17 e ,XL>. (57)
k

e.g. for the permutation operator we have

PIXy,. . Xp) = 2,11 X0, X)) = D01 X0 Xy Xigo, Xepr, Xigss oo, X1 (5.8)
k

In the above expression (5.7), the limits of the sum over k depend on the boundary conditions.
For periodic boundary conditions we have >°%_ . for open boundary conditions Zﬁill_e, and for

infinite boundary conditions we have > 72 .

5.1 Lax Operator, Monodromy and Yangian Generators

Consider a spin chain with spins |X;) € Vj, where we assume that all physical or quantum
spaces Vi = V are identical. The algebraic construction of spin chain models employs the
concept of a so-called auxiliary space Vy. The auxiliary space typically transforms under the
fundamental representation of the symmetry algebra and we label it with an index 0 or 0 in
order to distinguish it from the physical spaces.

As a generalization of the continuous classical case (2.43), we introduce a Laz operator on
the space. This Lax operator or Lax matrix acts on a physical space V; and on an auxiliary

*"The name XXX stems from the fact that the coefficients in the Hamiltonian (5.5) of o} @ o}, |, 07 ® 0744
and o} ® 0}, are equal. If two or all three of these coefficients are chosen differently, one finds the so-called
XXZ or XYZ spin chains, respectively. Choosing one coefficient to be zero yields the XX or XY model.
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space Vy, i.e. on the product space V, ® V. The defining relations for the Lax operator are

given by an integrability equation similar to the Yang-Baxter equation for the R-matrix, the
so-called RLL-relations defined on Vi ® Vy ® Vj:

Rog(u = 0) Lo (1) Ly (v) = L (0) Lo () R (u — v). (5.9)

Resembling the definition of a Lie algebra via commutators, the RLL-relations relate the
two products Lgg(u)Lg(v) and Lyg(v)Lgo(u) to each other and can thus be understood as a
generalized commutation relation defining L. Here the R-matrix acts as an intertwiner on two
auxiliary spaces Vo ® Vg labeled 0 and 0. Since we are interested in integrable models, we
assume that the R-matrix obeys the quantum Yang-Baxter equation (3.5). Alternatively, given
the Lax operator, we may understand (5.9) as a defining equation for the R-matrix, which for
consistency has to obey the quantum Yang—Baxter equation. In fact, if the auxiliary space V|
and the physical space V, are the same, the Lax operator is often identified with the R-matrix
(up to convenient shifts in the spectral parameter and overall scalar factors). In particular, for
fundamental models such as the Heisenberg spin chain, where the physical and auxiliary spaces
carry the same representation, one often finds

The full power of the Lax formalism comes into play when the physical and auxiliary repre-
sentations are different. Note that in principle nothing prevents us from choosing arbitrary
representations on the physical and auxiliary spaces and to study possible solutions to the
Yang-Baxter or RLL-equations.

One of the most important quantities in the context of integrable spin chains is the monodromy
matriz T*5(u) defined as a product of L of the above Lax matrices:*®

i1 i i3 iL

B () = Lk, () LR (u—ua) - LR (u =) = o <D=0-0—-0-0=0-2 . (5.11)

Ji J2 J3 JL

Alternatively we write this monodromy in the often more user-friendly form

T1 77777 L70<u) = Llo(u — Ul)Lgo(u — Ug) e LL()(U — UL). (512)
In general, one may consider inhomogeneous spin chains with non-trivial parameters wu; for
k =1,...L. In the following we will restrict to homogeneous chains with inhomogeneities

The monodromy Ty = T, 1 acts on L physical and one auxiliary space and obeys the
same equation as the underlying Lax matrix, namely the RTT-relation that we have already
encountered (3.94):%

Rog(u — v)To(u)T5(v) = Tg(v)To(u)Reg(u — v). (5.13)

As we have seen in Section 3.3.2, the Yangian algebra may be defined via this equation. In order
to identify the generators of the Yangian algebra (in the first realization) within this formalism,
we will now expand the above monodromy around the point u = oco. For this purpose we first

48This is the discretized version of the path-ordered exponential (2.48).
49For a more extended pedagogical introduction to the Lax formalism and algebraic Bethe ansatz see e.g. [71,72].
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require a more explicit expression for the Lax operator, which is typically written as (up to
overall factors):

(Lko)ag(u) = —july, ®(]10)a5 + ZJz X (Eg)ag = —iu[]l]ag + Z'[Jk}ag = a B . (514)

Here Ef denotes a generator in the fundamental representation of the underlying symmetry
algebra g acting on the auxiliary space and J* may correspond to a generator in a different
representation. For convenience we suppress the fundamental indices in the physical space V),
and, as usual, we sum over the adjoint index a.°’ Thus, the monodromy matrix on a chain
ranging from 1 to L takes the form

T5(w) = (—iw) " ([12] %, — 2 [1]%,) - ([ — 2 [Tu]™5), (5.15)
such that
T (u) = (—iu)L<[]l]o‘5 — ikz_j [Je]%s + u12kz_: z:; [J51% [Tkl 75 + 0(1}3)). (5.16)

If we now consider the example of E, = o,, i.e. the fundamental representation of su(2), we

find
[Jel®y [Je) s = I, @ (E§)*, J5 © (E§) s = ieancdp s ® (E§)* s + J3J566 @ (1) 5, (5.17)

where we have used that for the Pauli matrices 0,0, = i€5a0q + Ope. Hence, we obtain®!

L L k-1
T (u) = (—iu) { %Z + eachZJch} E§)s
k=1 k=1 j=1
L k-1
(—u) {]l—k S ] (L0)%5 + (—iu) O (). (5.18)
k=1 j=1

The first bracket gives rise to the Yangian level-zero and level-one generators at orders % and
u%, respectively (here with fupe. = €ape):

L L k-1
Ja = Z Jkas Ja = Jfabe Z Z Jb,j Jek - (5.19)
k=1 k=1j=1

The second line of (5.18) represents a linear combination of the identity and higher powers of
the level-zero charges, which are less interesting for algebraic considerations.” Higher orders in
the %—expansion contain higher-level Yangian generators as well as powers of the lower-level
generators.

50Here we have chosen our convention such that L($) = P for J = 2~ and E® = 0%, with ¢ denoting the
Pauli matrices.
51See also [63] for a similar discussion.

-
52We use
-1

L k L L
DT EIIDWETIIL TP 520
k=1j k

i=1 k=1 j=1

where typically J$J¢ ~ 1.
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Figure 7: We distinguish between periodic (o) and open () as well as semi-infinite,
i.e. half-open, and infinite spin chains.

Note that the above expansion of the spin chain monodromy is very similar to the continuous
version in (2.51). In fact, we could have guessed these expressions for the Yangian generators
by simply replacing [dx — >",. Here we have no local contribution to the level-one genera-
tors coming from the homogeneous monodromy matrix. We may obtain an additional local
contribution Y, ugJ¢ by introducing nontrivial inhomogeneities uy # 0 in (5.11).

In principal, checking the Yangian symmetry of a spin chain model, i.e. of a defining
Hamiltonian, provides an integrability test. In general, however, the question of whether a
Hamiltonian has exact Yangian symmetry strongly depends on the boundary conditions of the
underlying model.

5.2 Different Boundary Conditions

Here we briefly comment on the compatibility of the Yangian with different spin chain boundary
conditions. Similar considerations apply to the case of continuous two-dimensional field theories
discussed above. We will see that an exact Yangian symmetry is generically not compatible with
finite boundary conditions. This means that the Hamiltonian defining the model does typically
not commute with the Yangian level-one generators. Nevertheless the Yangian symmetry can
give nontrivial constraints in the bulk of the system, i.e. the symmetry equation is obeyed
modulo boundary terms. While in this case the spectrum is not organized in Yangian multiplets,
one may use Yangian symmetry to bootstrap a Hamiltonian, cf. e.g. [73]. Suppose we make an
ansatz for a Hamiltonian H, then the equation

[J,H] = boundary terms (5.21)

yields non-trivial constraints on the bulk part of this Hamiltonian and in this sense represents a
non-trivial symmetry of the model. In certain special cases, one may even find an exact Yangian
symmetry as indicated below.

Periodic Boundary Conditions. Periodic boundary conditions are implemented by identi-
fying the spin chain site L 4+ 1 with the site 1, such that the sites L and 1 are nearest neighbors.
Generically, exact Yangian symmetry is not compatible with periodic boundary conditions. This
can be seen from the ordered structure of the level-one symmetry in the first realization. Hence,
to define a Yangian level-one generator for a periodic system, one has to choose an origin on the
periodic chain such that the sites can be considered as being ordered according to their relative
position to this origin. When applied to a periodic quantity, this typically implies boundary
terms that spoil an invariance equation.
As an example consider again the Heisenberg or XXX Hamiltonian introduced above:

L

H= HXXX = Z(]lk,k+l — IPk,k+1)- (522)
k=1
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The su(2) symmetry of the model means that

[Ja, H] =0, (5.23)

with J, = >4, Z* denoting the Lie algebra (or level-zero) generators of su(2). Here again
Oa=123 are the Pauli matrices and [J,, J;] = €apede. The corresponding Yangian Y [su(2)] is

spanned by these level-zero generators and the level-one generators

ja = €abc Z Jb,ch,k' (524)

1<j<k<L

Importantly, here we have chosen a spin chain origin at site 1 or L, respectively. While
this point is not distinguished by the periodic Hamiltonian (5.22), defining the level-one
generator (5.24) requires this choice. We remember from the su(2) example discussed above
that [€apeds @ Je, Pl = J, ® 1 — 1 ®J, which implies that

JoH =Je1 —Jer=Je®01®0-01-1Q--- @ 1), (5.25)

Here the dots stand for L — 3 identity operators 1. Hence, the Heisenberg Hamiltonian commutes
with the level-one symmetry up to boundary terms, i.e. terms that act only on the boundary
of the spin chain. Similar considerations apply to the Yangian symmetry of the spin chain
Hamiltonian of N' = 4 super Yang—Mills theory discussed in Section 6.2 [20]. Note that particular
examples of spin chain models exist, whose periodic boundary conditions are compatible with
an exact Yangian symmetry, see [74].

Cyclic Boundary Conditions. In contrast to periodic boundary conditions which only
imply that the sites L and 1 are neighbors, cyclic boundary conditions in addition require
that the system is invariant under cyclic shifts & — k+ 1 or kK — k£ — 1 of the sites. This
implies that the total momentum of all spin chain excitations has to be zero. In particular,
this means that the Yangian generators should commute with the shift operator U, which
induces cyclic permutations by one site. That this yields additional constraints can be seen
from evaluating [22, 75|

R L k-1 L+1k—1
U Ta] = Ufare| X X Jogden = 30 X Iode| = U (farefivcdas — 2ucdunl.). - (5:26)
k=1 j=1 k=2 j=2

In general, the right hand side of this equation does not vanish, which emphasizes the dependence
of the level-one generators on the choice of an origin of the chain. The first term is proportional
to the dual coxeter number ¢o = f,pfoca, Which vanishes only for some particular algebras g.,—o.
The second term is proportional to the level-zero generator J. and is generically non-zero.
Suppose, however, we forget about Hamiltonians for the moment and instead consider
Yangian invariants, i.e. ‘states’ |I) that are annihilated by the Yangian generators. Then at
least for certain algebras g.,—o one may define cyclic invariants |I) of the Yangian algebra:*

J|I) =0, consistent if JII) =0, and ¢ =0. (5.27)

These conditions imply that the right hand side of (5.26) vanishes on |I). This type of cyclic
boundary conditions is particularly interesting since it applies to scattering amplitudes in N = 4
super Yang—Mills theory discussed in Section 6 with g.,—o = psu(2,2[4).

3See [76] for a pedagogical introduction to a systematic study of Yangian invariants.
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Open and Semi-infinite Boundary Conditions. Similar to the case of periodic boundary
conditions, also open boundaries are often not compatible with a full Yangian symmetry. Here
the situation very much depends on the specific bulk and boundary part of the Hamiltonian:

H= Hbulk + Hleft-boundary + Hright-boundary- (528)

Analogous considerations apply to semi-infinite (=half-open) boundaries where either the left or
right boundary is absent and the chain extends to infinity on that side.

Suppose we have a system with a level-zero symmetry algebra g in the bulk and a symmetry
h at the boundary (see e.g. [77]) such that (g,h) form a symmetric pair, which means that
g = h ®m, with

[h,b] C b, [h,m] C m, [m, m] C m. (5.29)

Furthermore we assume to have a Yangian symmetry Y'[g] in the bulk. Then the whole system,
including the boundary, often still has a twisted Yangian symmetry Y[g, h] whose level-zero
generators are J; (note the index i), while the level-one generators have the modified form (note
the index p)

Jp=Jp+ 2 foaididg, = Jp + 1Cy, J,), (5.30)
with Cy representing the quadratic Casimir of g restricted to . Importantly, the indices i, j, . ..
correspond to generators of h and the indices p, q, ... to generators of m. The index sums thus

only run over subsets of all index values. For further details and references see for instance [78].

Infinite Chain: No Boundaries. As seen above, the Yangian generators are most naturally
defined with boundaries at oo, i.e. with no boundaries at all. On such an infinite chain, the
right hand side of (5.25) vanishes and the Hamiltonian has exact Yangian symmetry. However,
typically such infinite spin chain systems are rather of formal interest and do not directly
represent physical models. In particular, their spectrum is not quantized due to the underlying
noncompact space.

5.3 Periodic Chains, Transfer Matrix and Local Charges

In the case of periodic spin chain boundary conditions, the so-called transfer matriz t(u) =
t;. 1 (u) is defined as the trace over the monodromy matrix (the trace implements the periodicity)

tz‘1...iL (u) B Til---iLaOl (u) — l1ip,o (u)7 (5.31)

J1---JL J1-JL.B = Yi-dne
and acts on the whole spin chain:
tu) Vi@V, > Vi® -V, (5.32)
In our alternative notation we may write this trace over (5.11) as
t(u) = Tro Lig(u)Log(w) . . . Liro(u), (5.33)

where we suppress the free indices and only indicate the vector spaces Vi on which the Lax-
matrices act. The index 0 denotes the auxiliary space which is traced, e.g. Tro(L1o)?% (L2o)7 =

Li?l LZ; It follows from the RTT-relations (5.13) that this transfer matrix commutes with itself

when evaluated at different spectral parameters (see e.g. [72,79]):
[t(u), t(v)] = 0. (5.34)
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Figure 8: Expanding the transfer matrix around v = % gives rise to the shift operator
U at zeroth order, to the shift operator times the Hamiltonian UQs at order u, and an
infinite set of additional commuting charges at higher orders of the spectral parameter
U.

Let us furthermore assume that the considered system forms part of the so-called fundamental
models, for which the auxiliary and quantum spaces are the same (or isomorphic) and for which
a special point u = % exists such that L(%) = PP, cf. [80]. This is the case for simple examples of
integrable spin chains such as the Heisenberg model. Hence the point u = 3 is dinstinguished
and we expand the transfer matrix around this point in order to obtain u-independent conserved
charge operators (cf. Figure 8)

L
tu+i)=Uexpiy v 'Q, =U+iulUQy+u’(iUQs — $ UQ,Q,) + O(u?), (5.35)
r=2

Here U = t(%) denotes the shift operator that is given by a product of iterative permutations
Py 141 and induces a cyclic permutation of all spin chain sites, e.g.

U‘XI,XQ...,XL>:’Xz,...,XL,X1>. (536)

Since we may pull out the overall factor U in (5.35), the Q, denote local operators on the spin
chain. It follows from (5.34) that all operators Q, mutually commute such that the transfer
matrix furnishes a generating functional for local integrable charge operators [81,80]:

: r>2. (5.37)

Remember that the first of these charges Qs = H is typically the Hamiltonian that is chosen
to define the model’s dynamics. The logarithmic derivative of the transfer matrix generates
L — 1 mutually commuting charges and thereby naturally associates the interaction range of
the longest operator to the dimension of the transfer matrix. Note that taking the logarithmic
derivative ensures that the charges are local [82] and that we have divided the definition of the
charges by the common shift operator

U =t(§) = e (5.38)

Hence, the first two powers in the expansion of the transfer matrix define the momentum
operator and the Hamiltonian of the model (cf. Figure 8):

; d
Q1 = —ilogt(3), Qs = —i— log t(u)

- (5.39)

_3
=3

Expressing the momentum operator Q; as the logarithm of an operator only formally illustrates
the analogy to the other charges. In particular, (5.39) implies that the density of the Hamiltonian
is proportional to the logarithmic derivative of the Lax operator:

d
Hi g1 = Qo1 d—log Lk:,k:-i—l(u)‘ R (5.40)
u u=5
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Figure 9: The interaction range of the charge Q,, is n, i.e. the charge operator acts on
n neighboring sites at the same time.

Note that this expression makes only sense for fundamental models with V; ~ V, where
the Lax operator Liy acts on the same space as the Hamiltonian density Hj 41, namely on
Vi ®@Vy =V, ®@ Vi,

In general, i.e. for non-fundamental models, the Yangian generators and the local Hamiltonians
do not have to originate from the same monodromy. If the auxiliary and physical spaces are not
identical, one may impose the following version of the RLL-relation (5.9) (now exchanging the
roles of auxiliary and quantum spaces) defined on Vi ® V1 ® V.

Rk‘,k-Jrl (U)Lko(u + U)LkJrLo(u) = Lk+170(u)Lk70(u + U)Rk7k+1(’lj). (541)

This equation follows from the quantum Yang-Baxter equation (3.5) by the identification
Ri2 = Ry kt1, Ris = Lo and Rog — Lyy1. Given a Lax operator Ly, this RLL-relation defines
an R-matrix on V; ® V., and allows to define a Hamiltonian via its logarithmic derivative
(cf. [80]):

d
Hi k1 = Qok i1 = 1 log sz,kz—i—l(u)‘ (5.42)

du

Higher local charges can be obtained from the expansion of a transfer matrix of the form (5.33)
with the replacement . — R and the trace taken over a quantum space.

u=0"

Example. In the case of the Heisenberg spin chain the first few local charges take the form,>*

cf. Figure 9

QZ - [1] - [27 1]7
QS - %([37 172] - [2737 1})7
Q= %(—[1] +2[2,1] - [3,2,1] +[2,3,4,1] — [2,4,1,3] — [3,1,4,2] + [4,1,2,3]), (5.43)

where we have used the notation of (5.7) to display the permutations which furnish the charges’
building blocks. We note that on a periodic spin chain we have [1, 2] = [1] since the difference of
these two operators only acts nontrivially on boundaries, which are absent on a periodic chain.

5.4 Master Symmetry and Boost Automorphism

In this subsection we briefly demonstrate the role of the discrete version of the Lorentz boost.

4In order to obtain exactly these expressions for the charges (which annihilate the ferromagnetic vaccuum
state) from the above formalism, one should modify the definition of the Lax matrix (5.14) by an overall function
of u. This modification does not change the physics of the model. We also note that the gl(N) symmetric spin
chain has the same charges.
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Boost automorphism and monodromy matrix. Let us derive an interesting relation for
the monodromy matrix of an ordinary integrable short-range spin chain along the lines of the
original paper by Tetel’'man [14]. First of all we introduce the Hamiltonian density using the
logarithmic derivative of an R-matrix with R(0) = P:

d

Hy g1 = 1 Pr g Rk,szrl(O); Rk,k+1(0) = @Rk,lwrl(u) . (5.44)

u=0

This density acts on the spin chain sites k£ and k£ + 1, i.e. on Vi ® V. We consider the
RLL-relation in the form of (5.41):

ng(U)Llo(U + U)Lgo(u) = Lgo(U)Llo(U + U)ng(?}). (545)

Differentiating with respect to v and setting v to zero afterwards yields the following differential
equation for the Lax-matrix:

Llo(u)Lgo(u) - Llo(u)Lgo(u) = i[ng, Llo(u)ng(u)]. (546)

Here we used that the R-matrix obeys the initial condition Rj5(0) = P15 Now we rename
1 — k and 2 — k + 1 and multiply this equation from the left by [[¥=} Ly; and from the right
by HKL:/,€ +1 Loe. This yields

()

If we now furthermore multiply this equation by k and sum over k from 1 to L , this yields

ﬁ Loe) - <ﬁ LOj)LO,k—l—l( ﬁ Loz) = i[Hk,kH, ﬁ LOj:|- (5.47)

t=k+1 j=1 t=k+2 j=1

d?(?iiu) + 0 x L01( ﬁ Loj) — L x ( ﬁ LOj)LO,L-i-l = Z{ZL: kHy g1, T(u)}, (5.48)

j=2 j=1 k=1

where T(u) denotes the monodromy matrix (5.11) with suppressed indices. Note that the
appearence of only right boundary terms originates in our choice of labeling the first and last
spin chain leg 1 and L.

If we take the limit of an infinite spin chain, i.e. —oo <— 1 and L — oo, the boundary terms
on the left hand side of (5.48) drop out and we find the equation

dT(u)
du

— i[B, T(u)], (5.49)

where we have defined the spin chain boost operator

B: Z ka,k+1- (550)

k=—o0

Note that this is the discrete version of the field theory boost (2.19), obtained by replacing
[dxx — Y, k. Using the expansion (5.18) of the monodromy matrix, we see that this equation
implies the relation

B,J,] ~ J,. (5.51)

Hence, the spin chain boost operator defined above corresponds to Drinfel’d’s boost automor-
phism of the Yangian algebra (3.24).
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Master symmetry and transfer matrix. The concept of master symmetry of integrable
models dates back to 1981 [83]. It denotes a symmetry whose iterative application to the
constants of motion leaves their commutator invariant. Consequently, the master symmetry
maps integrable charges to integrable charges and thereby generates a set of infinitely many
commuting operators.

In order to identify such a symmetry we now take the trace Try over the monodromy matrix
in (5.49) to obtain the following equation for the transfer matrix

dt(u)
du

We assume that the expansion of the transfer matrix t(u) yields the local charges via (5.37).
Hence, (5.52) is a remarkable statement since it implies

— i[B, t(u)]. (5.52)

Q,=U'B,U=U"'BU - B, (5.53)
Qs = +iU'[B,UQ,| — £Q2Qs = §[B, Qi) (5.54)
Qy = £[B, Q3] (5.55)

The spin chain boost operator B = B[Q,], the first moment of the Hamiltonian, therefore
recursively generates the algebra of local integrable charges

Q41 = 2B, Q) (5.56)

It represents a master symmetry of the short-range integrable model. Note that the charges Qg
and Q, given in (5.43) may be obtained using the boost operator in this way.>®

?
r

Poincaré algebra. Let us compare the algebra spanned by the local charges and the boost
operator to the ordinary two-dimensional Poincaré algebra, cf. [15]:

[P,H =0, [B,P]=H, [B,H=P. (5.57)

Here space and time translations P and H are ‘rotated’ into each other by the Lorentz boost B.
For our integrable spin chain the Poincaré algebra is enhanced according to

H—>Q2,Q37...7 P— 9 B-)B, (558)

and we have the commutation relations

[Ql, Qz] =0 [B, Ql] ~ Qy [B, QQ] ~ Q3 [B, Q3] ~ Qy
[Q2,Q3] =0
[Q5,Q4] =0
(5.59)

Space and time translation are supplemented by an infinite set of symmetries. The Lorentz
boost translating between the two symmetries P and H of the ordinary Poincaré algebra (5.58),
here takes the role of a ladder operator. For the integrable spin chain the sequence of symmetries
does not close and we find a tower of conserved charge operators, cf. Figure 10.°° Mapping
conserved charges to conserved charges, the boost thus represents a master symmetry in the
above sense.

55Notably, this method produces additional boundary terms which vanish on infinite or periodic spin chains
and can therefore be dropped.

56 Also in continuous field theories one may construct a tower of local charges, which are mapped onto
themselves by the Lorentz boost, see e.g. [84]
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Figure 10: Analogy between the Poincaré algebra with generators B, P and H and
the algebra of the boost and the integrable charges.

Periodic Chain. To get rid of the boundary terms in (5.48), we have taken the limit of an
infinite spin chain. On a periodic spin chain, the definition of the boost operator is obsolete since
it crucially depends on the choice of a spin chain origin. Also in this respect, the boost operator
resembles the Yangian level-one generators. Nevertheless, the short-range charge operators of
the infinite spin chain are the same as those of the periodic chain since in both cases boundary
operators vanish. Hence, while only properly defined on an infinite chain, the boost operator
can be formally used to generate the set of periodic integrable charges. In fact, if the boost
operator were well-defined on periodic chains, the finite transformation corresponding to (5.52)
would merely constitute a similarity transformation.

5.5 More Boosts and Long-Range Spin Chains

We have seen above that integrable spin chains feature a tower of commuting charges Q,,
n =1,2,.... Furthermore, we have seen that the boost operator

B=Y kHy =3 kQuy, (5.60)
k k

plays the role of a master symmetry. Certainly, we may also define higher ‘boost operators’
associated with the higher local charges:

B[O, =) Kk Quu- (5.61)
k

Here B = B[Q,] denotes the boost operator encountered in the previous subsections. A natural
question is, which role the higher boosts play for the considered spin chain models. We will
see that they allow to define an integrable (so-called long-range) deformation of the above
short-range spin chain models, which plays an important role in the context of the gauge/gravity
duality further discussed below (cf. Section 6.2).

In fact, one may define deformed charge operators Q,,(\) via the evolution equation

d

Ty QN = ion () BIOv(V], 2.V, k>2 (5.62)

Here we sum over k and ay(\) denotes some function of A whose form specifies the precise
deformation. If the charges 9, (0) commute among each other, also the solutions Q,, () to the
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Figure 11: Overview over bilocal operators: Yangian level-one generators j, boost
operators B[Q,]| = [1|Q,] and bilocal charges [Q,,| Q]

defining equation (5.62) commute. Hence, the deformed charges Q,,(\) define an integrable
system. The deformation of the local charges typically increases their interaction range on
the spin chain. Suppose we denote the local short-range charges of the previous subsections
by Q, = 9,(0) = Q. Then the charges Q,()\) define a long-range spin chain model, i.e. a
model whose defining Hamiltonian and higher integrable charges have longer and longer range of
interaction when going to higher powers of the parameter A. Again, the long-range Hamiltonian
H(X) = Qs(\) defines the dynamics of the model and the parameter A may be understood as a
coupling constant.

In general, perturbatively long-ranged spin chains may be defined as deformations of the
above short-range chains, e.g. the Heisenberg chain. The short-range charges Q,, are taken to
be the leading order Q%O) in a power series

Q,(N) = QW + X0 + 120 + o), Q¥ =9, (5.63)

such that the interaction range of the charges grows with the perturbative order in A\. The long-
range charges can still be written as linear combinations of local and homogeneous operators Oy,

Qr(N) =Y k(MO (5.64)

but now with coefficients ¢, »(A) which are formal power series in A starting at a certain order.
The charges have to obey the integrability condition [Q,(\), Qs(A)] = 0 order by order in A,
which is guaranteed by the deformation equation (5.62).

To make connection to the Yangian algebra, we note that also the Yangian generators
should be deformed in order to preserve their commutation relations with the local (long-range)
Hamiltonians. By assumption, the level-zero generators J, commute with the charges Q,, and
thus also with the boost operators B[Q,,]. For the level-one generators one uses a deformation
equation analogous to (5.62):

;A Ta(N) = i (N [BIQeV] Tu(N)]. (5.65)

This equation defines the long-range level-one Yangian generators. In fact, we may remember
that in analogy to the level-one symmetry, also the boost can be understood as a formally bilocal

expression, i.e. B[Q,] = [1|Q,] (see (2.20) for the continuous case). Taking this consideration
further one can define even more general bilocal charge operators, cf. Figure 11:
i<k

These may also be employed to generate long-range deformations of spin chain Hamiltonians via
similar differential equations as (5.62) and (5.65). We note that these bilocal charge generators
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induce so-called dressing phase contributions to the dilatation operator of N’ = 4 super Yang—
Mills theory, cf. Section 6. However, discussing these in more detail is beyond the scope of these
lectures; see [16] for further elaboration.”

Example. To illustrate the deformation of level-one generators via (5.65) let us once more
consider g = su(2) with generators J, = §¢ in the fundamental representation. We choose a3 = 1
and ags3 = 0, i.e. we deform the level-one generators only using the higher boost B[Qs]. The
first higher charge Qs of the su(2) Heisenberg chain is given by (5.43) and we can plug it into
the definition of the generalized boost operator (5.61). Then we find the following leading-order

deformation of the level-one generator:

JaON) = Ja(0) + Xi[B[Qs], T + OON2) = €ape > T jJes + Neae > Jordenss + ON2).  (5.67)
j<k k
Here the level-zero generators J,(A) = J, remain undeformed. Notably, this deformation of
the level-one generators of the Heisenberg model corresponds to the two-loop deformation of
the Yangian symmetry of the su(2) dilatation operator of N’ = 4 super Yang Mills theory,
cf. [74,88,73]. In this context the parameter A represents the 't Hooft coupling constant, cf.
Section 6.

6 Yangian Symmetry in 4d Field Theory

“The models analyzed in this paper, formulated in two space-time dimensions, are
clearly unrealistic. However, we believe that the phenomenon exhibited by these
models is indicative of what one would expect in more realistic models. In fact the
restriction to two dimensions is only in order to have an asymptotically free theory
in which one has an explicit expansion parameter (N). The only asymptotically free
theory in four dimensions necessarily involves gauge fields and does not lend itself to
any simple approzimation.” D. Gross and A. Neveu 1974 [13]

Let us see that in fact Yangian symmetry can also be found in dimensions greater than two.
In order to get a glimpse on how this happens, we first have to introduce a very interesting
model, the maximally supersymmetric Yang—Mills theory in four dimensions. For a selection of
helpful reviews see for instance [89].

6.1 N = 4 Super Yang—Mills Theory

Four-dimensional A/ = 4 super Yang-Mills (SYM) theory was originally introduced in the 1980s
as the dimensional reduction of a ten dimensional super Yang—Mills theory with fermions [90,91].
Compactification on a six dimensional torus gives rise to a four-dimensional field content

comprised of a gauge field A, four Dirac spinors ¥,, e as well as six scalars &5, k=1,...,6.
Furthermore we have an adjoint covariant derivative D, = 0, —ig[A,, - |. The Lagrangian
reads

Ly = Tr |1 F*™ Fuy + D' "D, Py, + W50, DV, — Lg° [0, 0"][Dy, D]

— LigWo P[P W) — LigWe S (B, B (6.1)

5"Note that this construction of long-range spin chains using boost operators may also be generalized to chains
of trigonometric type [85] or to chains with open boundary conditions [86]. Furthermore interesting relations to
(inhomogeneous versions of) Baxter’s corner transfer matrix exist [87].
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with a field strength defined by F,, = ig*[D,,D,].*® The four- and six- dimensional sigma
matrices obey the relations

{o", 0"} =", {xm, oy =g (6.2)

All fields transform in the adjoint representation of a semisimple Lie group. In what follows
we take this gauge group to be SU(N). The N =4 SYM theory action is uniquely determined
up to two free paramters; the dimensionless coupling constant gyy and the rank of the gauge
group N.%

Symmetry. The different indices appearing in the Lagrangian represent different symmetries.
Contraction of all indices shows the symmetry invariance of the respective terms:

e Spacetime symmetry: The indices p,v correspond to the vector representation of the
Lorentz group. Indices «, 8 and &, 3 represent the left and right handed spinor represen-
tations of the Lorentz group.

e Global internal symmetry (R-symmetry): The Lagrangian has a global internal SO(6) ~
SU(4) symmetry acting on the SO(6) vector indices m,n =1,...,6.

e Local internal symmetry (Gauge Symmetry): The Lagrangian has a local SU(N) gauge
symmetry. Above the respective indices are hidden in the trace Tr.

In fact, the Poincaré and R-symmetry of the Lagrangian are enhanced to superconformal
symmetry. To be precise, the action of this four-dimensional quantum field theory is invariant
under the set of generators®

{L,L,P,K,D,R|Q,Q,S,S} € psu(2,2]4), (6.3)

which span the N' = 4 superconformal algebra divided by its center, cf. e.g. [92]. The above
generators correspond to the set of Lie algebra (level-zero) generators J that we encountered in
the previous sections. They satisfy the graded (due to the fermionic supersymmetry generators)
commutation relations®!
[Ja7Jb} = fabc Je. (64)

This Lie algebra contains the Poincaré Lorentz- and momentum generators L ,L and P as well
as the momentum supercharges Q and Q. Being conformal, the symmetry algebra also encloses
the conformal boost K, the dilatation generator D and the conformal supercharges S and S;
all fields of the theory are massless. The action is invariant under an su(4) internal symmetry
contained in psu(2,2[4) and identified with the generators R. This R-symmetry rotates the
supercharges into each other.%?

One of the most remarkable features of N' = 4 SYM theory is the fact that its coupling
constant is constant, i.e. independent of the renormalization scale pu, cf. [94-96]:

9g
=u— =0. 6.5
e (6.5)
PSHere, spacetime indices are denoted by p,v,.. = 1,..,4 while spinor indices of su(2) given by a,f,.. or
&, B, .. take two values. Vector and spinor indices of $0(6) ~ su(4) are denoted by m,n,.. and a,b,.. and range

from 1 to 6 or 1 to 4, respectively.

59Here we ignore a topological term ~ 6 F.F.

60Note that the Q’s here denote supercharges and should not be confused with the local charges Q,, discussed
in the previous section.

61Tn this section we distinguish between upper and lower adjoint indices.

62This form of supersymmetry with generators transforming non-trivially under the internal R-symmetry was
referred to as hypersymmetry in the original work on A" =4 SYM theory [93,90].
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This scale independence implies that (super)conformal symmetry is preserved at the quantum
level making this model the paradigm of four-dimensional quantum field theories. In fact, this
large amount of symmetry is further enhanced in the so-called planar limit, which turns this
gauge theory into an integrable model.

Planar Limit. We consider the action of A/ = 4 SYM theory in terms of the standard
Yang-Mills coupling gywm:

2
Iym

For the large- NV limit it proves useful to redefine the free parameters of the theory by introducing
the so-called 't Hooft coupling [97]
A= giy V. (6.7)

The limit N — oo, A = fixed is called the t Hooft, large-N or planar limit. The latter name
stems from the fact that in this limit only Feynman diagrams contribute that can be drawn on
a plane (as opposed to different topologies). Taking N to infinity and restricting to the leading
perturbative order, the 't Hooft coupling A is the essential expansion parameter in the planar
limit. It is related to the coupling constant g in (6.1) by A\ = 8w2¢g%.

The above large-N limit was originally introduced in 1973 by 't Hooft who investigated
U(N) gauge theories with regard to inseparable quark bound states as found in QCD [97]. The
't Hooft limit was his approach to simplifying the strong coupling behavior of QCD. He also
noticed that in this limit the expansion of correlators very much resembles the genus expansion
in a string theory with coupling gs = 1/N. Later this became manifest in form of the AdS/CFT
correspondence, c.f. Section 6.4.

In the planar limit N' = 4 SYM theory acquires an additional symmetry, namely integrability
which leads to many simplifications in explicit calculations and which is realized on several
types of observables in the form of Yangian symmetry (see below).

Gauge invariant operators and spin chain picture. The prime observables of a conformal
field theory are correlators of gauge invariant local operators. In fact, the knowledge of all
two point-functions is equivalent to knowing the spectrum of the theory, while the three-point
functions encode the conformal structure constants and thus the dynamics. Hence, it is important
to understand how these local operators look like.

All fields of N'= 4 SYM theory transform in the adjoint representation of the gauge group
SU(N). Thus, we can associate a fundamental and an anti-fundamental color index to each of
the fields X% € {D,, Yaa, V2, Pk, Fu }%- A gauge transformation acts as X — UXU ™! . Taking
color traces of products of fields transforming homogeneously under gauge transformations, we
can thus construct gauge invariant local operators as:

O((L’) = Tl"[XlXQ C XL] (ZL’) == (Xl)a1a2 (Xg)a2a3 N (XL>ULu1 (I) (68)

Here all fields X; are understood to be evaluated at the same spacetime point x#.% Since all
gauge indices are contracted, it is clear that operators of this form are gauge singlets. In the
following we will refer to the trace operators (6.8) also as local gauge invariant states and make
use of the identification

Tr[X;... X = |Xy... Xp). (6.9)

63Note that the gauge field A, cannot be used for the construction of such states because it transforms
inhomogeneously under gauge transformations.
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Obviously, also products of traces will be gauge invariant operators. However, in the strict®?
large- N limit these are not relevant for the correlators we are interested in. The set of states of
the form (6.8) thus forms a (cyclic) basis for local gauge invariant states in N’ =4 SYM theory
at large N.

The above trace operators can be considered as a tensor product of fields transforming under
a representation of the theory’s symmetry algebra plus additional cyclic boundary conditions.
In other words we may call the above basis states spin chains with cyclic boundary conditions,

e.g.

Tr@l...¢1¢2§251...@1.
-® —-—O—0O— —O®— (6.10)

In particular, the representation of the superconformal symmetry takes the tensor product form

L
Jo=> Jap Ja € psu(2,2]4), (6.11)
k=1

where J, ; denotes the representation on one of the fields. Except for the Lorentz- and internal
rotations L, L and R, the representations of all symmetry generators of N' =4 SYM theory
acquire radiative corrections in the coupling constant when promoted to higher loop orders

Ja(g) =IO 4 g0 L 2 3@ 4 Jo € psu(2,2[4). (6.12)

The graded commutation relations of psu(2,2]4) with structure constants f,;,¢ are not affected
by these deformations

[Ja(9), Jo(9)} = fur” Je(9). (6.13)

In what follows we will refer to the perturbative order ¢g* as the ¢-loop order.

6.2 Dilatation Operator

In this section we briefly indicate, how Yangian symmetry acts on the dilatation operator
alias the Hamiltonian of N/ = 4 super Yang—Mills theory. In fact, studying eigenvalues of the
dilatation operator is equivalent to studying the energy spectrum of this theory. This can be
seen in a particular radial quantization scheme (cf. e.g. [98]), where the dilatation operator
generates time shifts

D= —ir— = —i—. (6.14)

Hence, studying conformal dimensions A of gauge invariant states O with DO = AQ is
equivalent to the study of the energy spectrum of these states. Thus, one often does not
distinguish between the terms energy spectrum and anomalous dimensions, and the dilatation
operator is referred to as the Hamiltonian of the theory.

Integrable structures in the su(2) subsector at one loop. As indicated above, solving
the spectral problem of local operators in N = 4 SYM theory reduces to the problem of finding
the spectrum of the dilatation operator D. Furthermore we have seen that a basis for gauge
invariant local operators is given by traces of the form (6.8):

64Tf we speak of the strict large N limit here, we mean that only the leading order in 1/N is kept.
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Therefore it suggests itself to think about diagonalizing D = Dy + dD(g) on this basis set of
states.

Diagonalizing the anomalous part of the dilatation operator dD(g) is a very challenging
task even at one-loop order. Thus, it appears reasonable to think of dividing the problem into
smaller pieces, i.e. to diagonalize the dilatation generator on a subset of local gauge invariant
states. All such subsectors closed under the action of the dilatation generator (i.e. closed
under renormalization) were identified in [99]. As a result one finds several closed sectors, each
characterized by its field content and the residual symmetry. For this classification of subsectors,
it proves useful to combine the six scalar fields ®; of N'=4 SYM theory into complex fields

X :@1 +Z'@2, W :@3+i@4, Z :@5+i@6, (616)
and their conjugates. The simplest subsector is then given by the (half-BPS) states of the form

T2t =TvrZ2ZZ.. . Z,
——®-  —O—0— (6.17)

where the picture again emphasizes the analogy between trace operators and spin chains. We
will refer to these states as the cyclic vacuum states of length L. The name vacuum already
indicates the relation to the ferromagnetic vacuum of a spin chain. The vacuum has the residual
symmetry®

psu(2[2) x psu(2]2) x u(1)?, (6.18)

where all generators except for the length measuring operator act trivially. That is, the length
L is the only non-vanishing quantum number characterizing the cyclic vacuum state. Hence,
diagonalizing the anomalous dilatation generator on these states is trivial.

In order to proceed to the simplest non-trivial subsector, we excite also the field W to
consider states of the form

TZ...ZWZ.. .2
- —O—O—0® —O- (6.19)

The residual symmetry of this sector is
su(2) x u(1)?, (6.20)

and it is therefore referred to as the su(2) sector of N' =4 SYM theory. The fields Z and W
transform under the fundamental representation of su(2) and the u(1) charges are given by the
length operator and the anomalous dimension dD. The resulting states can be identified with
spin chains built out of fundamental modules of su(2), i.e. with chains of the Heisenberg type
encountered above.

The one-loop dilatation operator in the su(2) subsector can be found by explicitly renormal-
izing the involved Feynman diagrams and reading off the renormalization constants. At one
loop order Minahan and Zarembo found the following expression in their famous paper [17]:%

Dy _gi (L = Pris1) + Olg®) = 922([1]—[2,1]). (6.21)

65Note that there is no known vacuum state with residual symmetry psu(2,2|4) which would appear natural
in N'=4 SYM theory.

66Note that including all scalar fields of N = 4 SYM theory leads to the s0(6) subsector which is closed only
at one loop order in perturbation theory. In the original work [17], however, one-loop integrability was shown in
the whole scalar s0(6) sector including the su(2) sector.
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Qa(g) = + ¢ + ¢ + O(9°)

Figure 12: The interaction range of the integrable long-range charges grows with
increasing order of the coupling constant.

Here 1, and Py ;41 denote the identity and permutation operator acting on sites k£ and k + 1,
respectively. Due to the periodicity of the trace states on which this operator acts, we identify
the sites L + 1 and 1. Remarkably, the one-loop anomalous dilatation generator in (6.21) equals
the Hamiltonian of the Heisenberg XXX% spin chain (with cyclic boundary conditions), the
prime example of an integrable model. Its discovery was a huge breakthrough in the study of
N =4 SYM theory.

Higher Loop Integrability: Long-Range Integrable Spin Chains. It was shown in [18§]
that the integrable structures of the spectral problem in N'= 4 SYM theory extend to higher
loop orders. Noting the existence of degeneracies in the spectrum at two-loop order, it was
possible to construct perturbative corrections to the first two integrable charges in the su(2)
subsector

%(9) = & + 779 +0(s"),  Qlg) = & + QY + O(g?), (6.22)
such that these operators commute
[0, 9+ ¢*(194”, @3] + (95, @5"]) + O(g®) = 0. (6.23)

Importantly, as opposed to the one-loop level, these deformed charges are only perturbatively
integrable, i.e. they commute up to higher powers in the coupling constant.

Also the interaction range of the higher charge orders increases with the power of the coupling
constant, e.g. the two loop correction to the dilatation generator acts on three sites at the same
time, see also Figure 12:

Q) = —3[1] +4[2,1] - [3,2,1]. (6.24)

In fact, this property is expected with regard to Feynman diagram calculations. The more
powers of the coupling contribute to a given perturbative order, the more fields can be involved
into the interactions.

This is exactly the type of long-range spin chain that we considered in Section 5.5. We note
that in fact the higher perturbative orders of the dilatation operator can be generated by the
generalized boost operators discussed above [16]. The corresponding two-loop deformation of
the Yangian level-one generators was given in (5.67).

Yangian symmetry of the dilatation operator. Having identified the one-loop dilatation
operator with the Heisenberg spin chain Hamiltonian, the above example (5.25) immediately
shows that the Yangian algebra Y[su(2)] commutes with this operator up to boundary terms. As
demonstrated by Dolan, Nappi and Witten [20], this property extends to the complete one-loop
dilatation operator of [99] which commutes with the level-one generators of Y[psu(2,2[4)] into
boundary terms:

[Ja, DY) ~ Ty — Jor. (6.25)
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In order to extend this relation to higher loops one major difficulty is that not even the two-loop
dilatation operator is known for the complete theory, i.e. on the full psu(2,2|4) spin chain.
However, the (asymptotic) higher loop dilatation operator is known in certain subsectors and
some statements on the Yangian symmetry can be made, see e.g. [100,16]. In the su(2) sector
for instance, the representation of the Yangian generators may be deformed using the boost and
bilocal charges of Section 5.5.

6.3 Scattering Amplitudes

In this section we briefly indicate how Yangian symmetry is realized on the scattering matrix of

N =4 SYM theory.

Four Dimensional Kinematics. We are interested in scattering of n massless fields in NV = 4
SYM theory. Therefore it is useful to express the n external four-momenta p); as bi-spinors
P = (0,)*pl and explicitly solve the on-shell condition p; = 0 for all external particles in
terms of commuting spinors [101]

peY = ANY, for k=1,...,n. (6.26)
Here A} and A% are complex conjugate bosonic Lorentz-spinors with indices o, 3,... = 1,2 and
&, B3,... =1,2. The spinor decomposition (6.26) of massless momenta in four dimensions is

unique only up to a complex rescaling
AY =AY, Y — eI\ (6.27)

All physical quantities should therefore be independent of this transformation.%”
It is straightforward to construct invariants under Lorentz symmetry out of the momentum

spinors according to
(ig) == (NAj) = ap AN, iG] o= [A] = g AN (6.28)

These spinor brackets furnish fundamental building blocks for the construction of scattering
amplitudes as we will see below.

Color Ordering. Tree-level scattering amplitudes in SU(N) N = 4 SYM theory can be
expanded according to

An({)\z, h;, al}) = Z An(AU(l), ho(l), ce ,/\U(n), ha(n)) Tr T9®T%@ T m) (629)

UESn/Zn

such that the amplitude’s color structure is encoded in traces over gauge group generators T
of su(N).% Here the symbol h; denotes the helicity of the ith particle. This straightforward
separation of color and kinematical structure allows to reduce the non-trivial scattering problem
to the kinematical part of the amplitude A,. The cyclicity of the trace implies that this
kinematical scattering amplitude A,, is a function invariant under cyclic permutations of its
arguments.

67Physical scattering amplitudes require at least two negative energy particles. This is due to the two
2
constraining equations > ,_, py = 0 and p2 = (22;11 pk> = 0. Here we will focus on positive energy solutions

and consider all particles as incoming in what follows. The arguments in this chapter generalize to the inclusion
of negative energy particles which, however, results in less clear expressions, cf. [23].

68 At higher loop orders and at the same time going beyond the planar limit also multi-trace contributions have
to be added to this expansion. Here we will be interested in the planar tree level where only single traces appear.
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Superfield. In order to compute scattering amplitudes in N' = 4 SYM theory it is most
convenient to make use of the fact that fields with different helicity transform in different
representations of the internal R-symmetry. We may thus introduce fermionic spinors n4,

A, B,...=1,...,4, of su(4) and collect all fields in a chiral on-shell superfield [95,102]
PN 1) =GT(AN) + 0 La(\ N) + 5007 Sas(X, \)
+'%€ABCDUAﬁBanIKA,X)+—%€ABCDUAUBUCUDCr(A,X) (630)

Here each power of the Grafmann parameters 1 corresponds to a different representation of the
R-symmetry. The on-shell gluons G*, fermions I"/ I, and scalars S have helicity +1, j:% and 0.

Every analytic function of the superfield @ can be expanded in terms of the Graimann
superspace coordinates 7. The fields contributing to a certain order in this expansion are
determined by the respective power in 7. In particular, singlets of su(4), i.e. symmetry invariant

functions of the superfield, are proportional to n* = is asepnnPnnP . Considering the
n-particle scattering amplitude as a superspace function
An(Pr, .., B,) = A (D(AY), ..., D(A), Ak = (N Aes i) (6.31)

we may thus expand it in terms of component amplitudes given by the coefficients of powers of

n4

n—2
Ap =S Aps, BA, ;= 4k A . (6.32)
k=2

Here we have introduced the 7 counting generator B = 70/0n" and used that supersymmetry
implies A,,1 = A, ,—1 = 0 [103]. In Minkowski signature the three-particle scattering amplitude
As of massless particles vanishes by kinematical arguments. Hence, the lowerst non-trivial
amplitude is Ay, see Figure 13.

As seen in (6.32), scattering amplitudes in N' =4 SYM theory are categorized according to
their helicity configuration A, = A, 2 + A, 3+ .... Remarkably, the so-called maximally helicity
violating (MHV) amplitudes AMHY = A, , can be written in a very compact fashion [104,101]

4(p) 58 . n _ n
qny __O(P) Q) PP =S ORN, Q=Y N, (6.33)
k=1 k=1

(12)(23) ... (n1)

with the Lorentz-invariant spinor brackets defined in (6.28). This definition of the amplitude
ensures conservation of the overall momentum P and super-momentum ().

Level-Zero Symmetry. Using spinor helicity superspace coordinates the one-particle repre-
sentation of the superconformal algebra psu(2,2|4) was written down by Witten [105]:

L% = X0y — 305 X°D, Lo = X2y — 165N,

D = 30,X" +3X10;,  Rp =n"0p — 1051°0c,

QaB =\ Ba SocB = aaaBa
Q% = A0, SE =1P0a,
pes = NP, K,; = 0,03, (6.34)

where we use the short-hand notation 9, = 9/0\%, Dy = 8/85\d and 94 = 9/0n”. The
above one-particle representation (6.34) is promoted to a representation on tree-level scattering
amplitudes in N'= 4 SYM theory by taking the tensor product, i.e. the primitive coproduct:

Ja = Z Ja,k- (635)
k=1
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MHV MHV

# of particles

helicity

Figure 13: Scattering amplitudes A,, ; in A" =4 SYM theory are nontrivial for n > 3
external legs (and real momenta). They can be classified according to their helicity
configuration measured by the respective power of the fermionic spinors n**. The
simplest so-called MHV and MHV amplitudes are those on the left and right boundary
of the above triangle.

Here J, 4 is the representation of the conformal symmetry generator J, on the k-th leg (A, N k)
of A, as specified in (6.34). Hence, the representation of the symmetry algebra on scattering
amplitudes very much resembles the spin chain symmetry acting on local gauge invariant states
(6.11). In fact, one may check that the scattering amplitude A,, is invariant under the action of

the above generators [105]:%
J, A, = 0. (6.36)

Level-One Symmetry. We may define the level-one generators in the expected form

Jo=f% > 10 (6.37)

1<j<k<n

with a vanishing one-site representation as in (3.49). Due to the commutation relation (3.19) of
the Yangian algebra given by

[Jaa Jb} - fachC7 [‘]mjb} = fabcjc7 (638)

it suffices to show the invariance of A,, under the level-zero symmetry and one level-one generator.
This will imply invariance under the whole Yangian algebra via (6.38). For the explicit calculation
it makes sense to choose the simplest level-one generator which is the level-one momentum
operator P being linear in derivatives. This generator takes the explicit form

pos — Y [PJW( P05 + LG, 00 + Dk ) + QOQEc — (o k)| (6.39)

ko kg
1<j<k<n

69Tmportantly, there are further corrections to the above expressions for the conformal level-zero generators in
the limit where two external momenta of the amplitude become collinear. These limits require careful treatment
and can also be tackled by algebraic considerations, see e.g. (23,24, 106].
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Here the (j <+ k) stands for all the previous terms under the sum but with j and k interchanged.
Acting with the level-one momentum operator on the MHV amplitude, one finds (see [75] for
more details)

ATAZ + M
(1n)
Remember that due to (6.29) scattering amplitudes are invariant under cyclic shifts. Hence, we
have a case of cyclic boundary conditions discussed in Section 5.2. Fortunately, the dual coxeter
number ¢y of the symmetry algebra psu(2,2[4) of N =4 SYM theory is zero and scattering
amplitudes are invariant under the level-zero symmetry (6.36) [22]. Thus, the case of (5.27)

applies and we have a consistent realization of cyclic Yangian invariants.”™

In fact, Yangian symmetry of the tree-level S-matrix of N' = 4 SYM theory was first
understood in the language of the so-called dual conformal symmetry [108,22]. Furthermore,
there is a map between all tree-level scattering amplitudes and certain contributions to the
dilatation operator [109]. In particular, the four-point superamplitude furnishes the integral
kernel for the one-loop dilatation operator [109,110]. Hence, the Yangian symmetry of the
four-point amplitude and the dilatation operator (both discussed above) can be shown to be
consistent with each other [111].

pad AMHV — e, PO AMEY — . (6.40)

4d versus 2d S-matrix. Let us finally compare the tree-level S-matrix of N' = 4 SYM
theory to the scattering matrix of the two-dimensional field theories considered in Section 4.3.
In particular, we are interested in two-to-two particle scattering processes. As indicated, the
four-point amplitude of N' =4 SYM theory obeys

4 k-1

Jo Ay = 5.3 T I8 Ay = 0. (6.41)

k=1 j=1

Here the generators of the Poincaré algebra enter the definition of the level-one generators Je,
i.e. the Yangian symmetry is not merely a Yangian of an internal symmetry algebra (cf. (6.34)).

On the other hand, the two-particle S-matrix S(u) of the above two-dimensional theories is
subject to (4.61), which for u = 0 becomes

Fed8J5S(0) + S(0) f4.J5]¢ = 0. (6.42)

Here we think of the S-matrix as an operator that maps the ingcoming particles 3,4 to the
outgoing particles 1,2. We set u = 0 since the 2d rapidities are quantum numbers of the
Poincaré algebra, which a priori does not form part of the 2d Yangian. In fact, one may rewrite
(6.41) in the form (see [111] for more details)

JoAy = [0 J005 Ay + % d805 Ay = 0, (6.43)

where it was used that the expression

4 k-1
e SN IRIE — (3835 J5I) = Fue(J8IS + 0TS + 385+ J5I9) (6.44)

k=1 j=1

annihilates the four-point amplitude. Notably, (6.43) now looks very close to (6.42). This
illustrates the similarity between the four-point amplitude A4 of N' =4 SYM theory and the 2d

"The particular Yangian Y [psu(2,2|4)] allows for further special features such as the occurence of so-called
bonus or secret symmetries, see e.g. [107].
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Figure 14: Illustration of the AdS/CFT correspondence: Gauge theory particles on
the boundary of space are dual to gravity described by strings in the bulk. While
the gauge theory lives in four-dimensional spacetime, the string theory is effectively
described by a two-dimensional worldsheet theory.

S-matrix S(0) evaluated at 0. In fact, one may define a deformation A4(u) of A4(0) = Ay [56,112],
such that A4(u) transforms under an evaluation representation of the Yangian algebra with
non-vanishing rapidity-parameter u in analogy to the 2d S-matrix S(u), cf. (4.61). While
algebraically consistent, the physical interpretation of the 2d rapidity-like parameter u remains
to be understood in the 4d theory.

6.4 Two Dimensions in Disguise: The AdS/CFT Correspondence

What makes N = 4 SYM theory an outstanding example in the class of quantum gauge theories
is its relation to gravity via string theory. The four-dimensional quantum field theory discussed in
this section is conjectured to be the dual description of type IIB string theory on AdS; x S° [113].
As such, it describes gravitational excitations via gauge degrees of freedom. The fact that the
flat Minkowski background of the gauge theory represents the conformal boundary of the string
geometry, makes this correspondence even more appealing, cf. Figure 14. The explicit map
between the corresponding coupling parameters is given by

R* 1 4drmgs

A ZQ%MN:

a’?’ N A

(6.45)

Here R denotes the common radius of AdSs and S® while o/ represents the string tension. The
string coupling constant is given by gs.

In particular, the conjectured correspondence maps the strong coupling regime of the gauge
theory to weak string coupling and vice versa. While explicit calculations in N' = 4 SYM theory
require a small coupling expansion A < 1, its string dual is only accessible for small curvature
R'/a’ = X\ > 1. This, on the one hand, represents an obstacle for proving the duality. On the
other hand, weak coupling results in either gauge or string theory provide information on the
strong coupling limit of its counterpart and thus open a new door to largely unexplored areas of
research. This, however, requires a verification of the AdS/CFT correspondence which, for the
moment, is most promising in the limit of large N, where the dual theories are believed to be
integrable.

Notably, the super-string theory on AdSs x S° is described by a two-dimensional worldsheet
theory that vaguely resembles the principal chiral model briefly discussed in Section 2.4 (but
is more complicated). Indeed, for this classical super-string theory nonlocal charges were
constructed, which are similar to the ones of Section 2. This shows the classical integrability of
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the string theory [114]. Also on the gauge theory side classical integrability has been discussed,
formulating the equations of motion in the language of Lax pairs or the inverse scattering
method [115] (see also [116]). However, N' =4 SYM theory represents the first four-dimensional
gauge theory that was found to be integrable and many of its features remain to be understood.
Certainly, the Yangian plays an important role for this ongoing journey. In fact, Yangian
symmetry was also observed for other AdS/CFT observables lying beyond the scope of this
review, e.g. for 2d scattering matrices [117,118], Wilson loops [119] or tree-level three-point
functions [120].

7 Summary and Outlook

Hidden symmetries have great appeal. They explain mysterious simplifications and their
identification poses exciting riddles. In these lectures we have discussed the Yangian, a particular
class of hidden symmetry which appears in various physical contexts.

In Section 2, we first looked at classical field theories in two dimensions. We have seen that
thinking outside the box of ordinary Noether symmetries, one may find nonlocal charges that
were a priori hidden. After this classical discourse, the obvious question for the corresponding
quantum symmetry arose. In order to understand this point, we made a step into a more
mathematical direction. We followed Drinfel’d who defined the Yangian algebra to tackle an a
priori unrelated problem, namely to solve the quantum Yang-Baxter equation. We have seen
that addressing this problem leads to the rich mathematical framework of quantum groups and
we have discussed the place of the Yangian in this context.

We then went back to 2d field theory in order to apply our supplemented mathematical
background. With Liischer, we understood how the quantum version of the above classical
nonlocal symmetries can be defined by renormalizing their bilocal generators. A consistent
definition of these charges at hand, we followed Bernard and identified them as the generators
of the Yangian algebra and the field theory Lorentz boost as a realization of Drinfel’d’s boost
automorphism. We also realized that the scattering matrix of a 2d field theory with Yangian
symmetry furnishes a solution to the quantum Yang—Baxter equation, i.e. the quantity that
Drinfel’d was after when introducing the Yangian.

Having studied Yangian symmetry in the context of continuous two-dimensional field theories,
we thought about a discretized version of the Yangian on spin chains. We understood the role
played by local charges or Hamiltonians defining the spin chain dynamics and how these may
co-exist with the nonlocal Yangian symmetry. Different boundary conditions were discussed
and we indicated the existence of certain long-range spin chains and their connection to a
generalization of Drinfel’d’s boost automorphism.

Finally, we tried to better understand whether Yangian symmetry is tied to two dimensions.
In Section 6 we briefly introduced the four-dimensional ' = 4 super Yang-Mills theory. We
found that the color structure of this gauge theory in the planar limit allows to introduce a
two-dimensional discrete space, namely the space of color traces, on which Yangian generators
may be defined. As a consequence, we have seen the bulk Yangian symmetry of the theory’s
dilatation operator as well as the Yangian symmetry of tree-level scattering amplitudes. Lastly,
we briefly sketched the duality of N' = 4 SYM theory to string theory described by a 2d
worldsheet theory.

The Yangian provides in many respects a special and interesting realization of integrability.
It represents one of three members within the family of integrable quantum group symmetries.
In fact, the Yangian may be deformed and one obtains more general quantum groups, which
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typically do not allow to scale away the quantum deformation parameter i (as it was possible
for the Yangian discussed above). To be more precise, the solutions to the classical Yang—Baxter
equation (and hence to its quantum deformation) fall into three categories via the Belavin—
Drinfeld theorem [121] (cf. Appendix A): 1. Rational solutions, 2. Trigonometric solutions and
3. Elliptic solutions. Describing rational quantum R-matrices, the Yangian corresponds to the
simplest of these categories and thereby to the most accessible mathematical structure. Hence,
a lot remains to be discovered when going beyond this class.

Due to the limited scope of this review, certainly many interesting mathematical facts about
the Yangian as well as physical applications of this algebra were not discussed or even touched
in these lectures. For further reading on the Yangian and related topics, let us mention the
very helpful and at many places complementary reviews by Bernard [33] and MacKay [78].
Also in the special context of the AdS/CFT correspondence, several useful reviews on Yangian
symmetry exist, see e.g. [75,106, 118, 122]. Note also the more general collection of reviews on
integrability in AdS/CFT [123].
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A Belavin—Drinfeld Theorem

According to a theorem by Belavin and Drinfel’d, the (nondengenerate) solutions r(u) to the
classical Yang—Baxter equation can be classified via the discrete subgroup I' C C of their poles
in the complex plane [121] (see also [53]). One finds three different categories:

1. Rational functions with rank(I”) = 0.

2. Trigonormetric functions with rank(I") = 1, i.e. functions of the form f(e**) with f being
a rational function.

3. Elliptic functions with rank(I") = 2.

The Yangian corresponds to quantum deformations of the first class of solutions. The last
category leads to elliptic quantum groups while the second class corresponds to quantum affine
algebras related to trigonometric R-matrices.
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1 Introduction

The S-matriz program is a non-perturbative analytic approach to the scattering problem
in quantum field theory (QFT), whose origins date back to the works by Wheeler [1] and
Heisenberg [2]. The main purpose of the program was to overcome the problems of QFT
related on one hand to the divergences emerging from standard perturbative methods, on
the other hand to the discovery, in the '50s and ’60s, of many hadronic resonances with
high spin.

The idea, further developed by Chew [3], Mandelstam [4] and many others, was to compute
scattering amplitudes and mass spectra without the use of a Lagrangian formulation, by
imposing analytic constraints on the S-matrix, that is the operator relating initial and final
states in a scattering process, and by giving a physical interpretation of all its singularities.
Moreover, higher spin particles were treated on the same footing as the fundamental ones.
This latter aspect will be illustrated in these notes when the so-called bootstrap principle
will be discussed.



Unfortunately, after the initial successes, not many quantitative results were obtained
in real-world particle physics. Moreover, the search for exact S-matrix models was finally
discouraged by the Coleman-Mandula theorem [5], stating that QFT models in d > 2 space-
time dimensions, with higher-order conserved charges, can only have trivial S-matrices.
However, between the "70s and the ’80s the program was given a new boost in the context
of d = 2 integrable theories, whose S-matrices are non trivial and can be uniquely fixed.
Furthermore, as we will see, knowing the amplitudes for the scattering between 2-particle
states is sufficient, at least in principle, to reconstruct the correlation functions of the
theory, through the form factor program.

The S-matrix plays an essential role also in calculating the spectrum of integrable theories.
Both in the large volume approximation, through the derivation of the asymptotic Bethe
ansatz, reviewed in [6], and at finite volume, being the key ingredient of techniques like
the Liischer formulas [7] and the thermodynamic Bethe ansatz (TBA), reviewed in [8].
We believe that this is one of the strongest reasons to study the integrable S-matrix theory,
that is the subject of these lectures. In particular, we will try to describe in a pedagogical
way some of the fundamental concepts developed in this research field, assuming that the
reader is familiar with the basics of quantum mechanics and special relativity. In order to
give a deeper understanding of a few technical aspects, calculations will be described in full
detail in some simple cases only. These tools and ideas can be then adapted to the study
of much more complicated systems and the interested reader may find more complete and
advanced discussions on the many important applications of such techniques in the quoted
references. Since we could not cover the enormous literature on the subject, we selected a
few reviews and original papers concerning the models discussed in these notes.

In particular, the lectures focused mostly on relativistic cases and were built mainly on
the book by Mussardo [9], the lectures by Dorey [10] and the paper by Zamolodchikov and
Zamolodchikov [11]. For the important non-relativistic case of AdSs/CFT}, the reading
of [12], especially Chapter 3, is suggested, as well as the reviews [13,14] and the seminal
papers [15-19], and [20] for an overview of many other recent developments in the context
of gauge/gravity dualities.

The outline of the lectures is the following: after the introduction of the necessary defini-
tions, with a brief description of the S-matrix physical properties, the main ideas underlying
the demonstration of the factorization property for integrable S-matrices will be explained.
Then we will focus on 2-particle S-matrices, including those for the processes involving
bound states, and on their analytic and algebraic properties.

A few examples, regarding 2-particle S-matrices of the sine-Gordon and chiral Gross-Neveu
models, will be given.

The latter theories will be used also to explain the links between S-matrices and correlation
functions, through a very introductory discussion on the form factor program in integrable
models. This part is built mainly on the paper [21] and the review [22] (see also [23], [24]
and the book [25]).

Finally, we conclude with a short guide to the literature about recent developments on
S-matrices in AdS/CFT correspondences.



2 Asymptotic states and S-matrix

2.1 Definitions

It is well known that in quantum mechanics the time evolution of a system can be defined
through an unitary operator U(t,to), which generates the state |¢)(¢)) by acting on a state

19 (to)):
[9(t)) = Ul(t, to)[¥(to)) - (2.1)

In order to study a scattering process, actually, it is not necessary to know U(t,ty) at
any values of t, g, but it is enough to know it at g — —oo and t — +00. Indeed, if we
assume that interactions among particles occur in a very small region of the space-time,
then, very far from the interaction region, we can treat them as free particles. Thus we
need to define in a formal way these quantum states of free excitations introducing the
so-called asymptotic states

|p17p27 s 7pn>zgégutan s (22)

where n is the number of particles, p; are their momenta and indices a; label their flavors.
Essentially, the asymptotic states describe wave packets with approximate positions at
given times: in particular, n free particles at time ¢t — —oo for the in states and at
t — +oo for the out ones. We choose the order of momenta to be p; > ps > -+ > p,. Any
intermediate state can equivalently be expanded on the in or out bases.

The S-matrix is defined as the linear operator that maps final asymptotic states into initial
asymptotic states (or vice versa, depending on the convention adopted, related to the

inversion of such operator):

Lo i =S| out. (2.3)

Written in components, this reads

|pl’p%''-apnygi,az7 Lan (24)

bi,..., ) / /AW 7 \out
- § : § : Sal, 7@7:; plv"'apnvplv"-apm) ‘plﬁpQ'"apm>b1,b27m7bm’

m= 2p1> >ph
blv-"vbm

where the second line actually involves integrals in p},ph ..., pl,.

Hence S is the time evolution operator from ¢t = —oo to t = +oo:

§=,lim_Ultto). (2.5)
t—o00

If the system has an Hamiltonian

H:H0+H[, (26)



where Hj is the Hamiltonian of the free system and H; = Hy(t) is the interaction part in
interaction (Dirac) picture!, then S can be expressed as

S =Texp [—i / = dtHI(t)} , (2.7)

— 00

where T denotes the time-ordering for the series expansion of the exponential in (2.7).

2.2 General properties

In this Section we discuss some general assumptions motivated by physical properties
fulfilled by usual QFTs. As previously mentioned, interactions among particles are assumed
to occur only at short range. Another obvious assumption is the validity of the QM
superposition principle, meaning that asymptotic states form a complete basis for initial
and final states and any in state can be expanded in the basis of out states and vice versa,
through the time evolution linear operator S, as expressed by (2.3). Moreover, probability
conservation implies that

1= [(m|S|¥)P?, (2.8)

where [1)) = )" an|n) and |m), |n) are orthogonal, complete basis vectors generating the
Hilbert space of the asymptotic states. Then one can show that
L= [m|S|)[* = (@IS im)(m|S|e) = ($[S'S|$) = Y apam(nlSTS|m), — (2.9)
m m n,m
meaning that the S-matrix has to be unitary: STS = 1. We will refer to this property also
as phystcal unitarity. Working mainly with relativistic theories, we will be interested in the
consequences of Lorentz invariance. In particular, given a generic Lorentz transformation
denoted by L|m) = |m/'), requiring invariance under such transformation at the level of the
S-matrix is equivalent to
(m/|S|n’) = (m|S|n) . (2.10)
In order to explain the consequences of this assumption, let us consider a 2-to-2-particle
scattering process, where the incoming (outgoing) particles have momenta p1,pa2 (ps, p4).
In a relativistic (14-1)-dimensional theory, energies and momenta of the particles involved
in such scattering process can be conveniently encoded in a set of relativistic invariants,
called Mandelstam variables [4]:

s=(pL+p2)’, t=(p1—p3)?, u=(p1—ps)?, (2.11)

2(0) = Ei,pgl)), such that s +¢+u = Z?Zl m?, due to the conservation law
p1 + p2 = p3 + psg and p? = ml2 Then the amplitude depends only on these Lorentz-

where p; = (p

invariant combinations of momenta, and in particular, since they are not independent, on
two Mandelstam variables only.

In this representation, both states and operators depend on time, then a generic physical state is
defined as |s7(t)) = e0f|sg(t)), where |ss(t)) is the corresponding state in the Schrodinger picture. Then
a generic operator in interaction picture is given in terms of the operator in Schrédinger representation by
Or = 0;(t) = ot ge~1Hot,



Now, momenta and energies can be parametrized respectively as p; = m;sinh 6; and E; =
m; cosh 6; in terms of the rapidity variable 6, while Mandelstam variables can be written

as
s =m? +m3 + 2myms cosh(62), (2.12)
t =m? +m3 — 2myms cosh(613), (2.13)
u =m? +m3? — 2mymy cosh(614) (2.14)

where we introduced the notation 6;; = 6; — ¢;. Then Lorentz invariance implies that the
scattering phases depend only on the difference of the rapidities.

Another fundamental assumption is the so-called macrocausality, that play a fundamental
role in the factorization property discussed in the next Section. Roughly speaking, mac-
rocausality tells us that outgoing particles can propagate only once the interaction among
the incoming ones happened, where “macro” means that this property can be violated on
microscopic time scales. Finally, we will assume the analyticity of the S-matrices, namely
they will be assumed to be analytic functions in the #-plane with a minimal number of
singularities dictated by specific physical processes.

3 Conserved charges and factorization

In a QFT, the notion of integrability is related to the existence of an infinite number of in-
dependent, conserved and mutually commuting charges (J;. Then they can be diagonalized
simultaneously:

Qslp)a = 4\ (D) [P)a - (3.1)

If they are local, i.e. they can be expressed as integrals of local densities, then they are
additive:

QS’pla o 7pn>a1,...,an - ( gal)(pl) +---+ ann) (pn))’pla o 7pn>a1,...,an . (32)

Integrability has dramatic consequences on the form of the S-matrix: in d > 2 dimensions
the Coleman-Mandula theorem [5] states that, even with a single charge being a second
(or higher) order tensor, the theory has a trivial S-matrix: S = 1.

In (1+1) dimensions, instead, S-matrices do not trivializes. However, integrability is still
very constraining and in particular we show that it implies

1. no particle production;
2. final set of momenta = initial set of momenta;

3. factorization.

Points 1. and 2. can be understood as follows. If a charge Q) is conserved, then an initial
eigenstate of Q5 with a given eigenvalue must evolve into a superposition of states sharing
the same eigenvalue:

S d ) =3 ). (3.3)

1€ j€Eout



Since we have an infinite sequence of such constraints, these imply that n = m and p; = p;

(qc([j) = qéf),i = 1,...,n), namely the number of particles is the same before and after
scattering and the initial and final sets of momenta are equal: in a word, the scattering is
elastic.

3.1 Factorization and Yang-Baxter equation

In order to show point 3., that is the factorization of n-particle scattering into a product
of 2-particle events

n—1 n
1=1 j=i+1

we begin by an heuristic argument due to Zamolodchikov and Zamolodchikov [11].

Let us consider an n-particle configuration space (R™), with particles interacting at short
range R. Then it is possible to consider n! disconnected domains where the particles, with
a permutation o of ordered coordinates x5, < Ty, < -+ < Xy, and momenta p,, > Py, >
-+ > pg,, are very far apart (|zo,,, — 24| > R), so that they can be considered free.
Because of points 1. and 2., the wave function describing the particles in any single domain
is a superposition of a finite number of n-particle plane waves:

Yo(@1,. ) =Y c(0,0") expli(py T, + -+ + Doy Tor, )] (3.5)
o

with o, 0’ being permutations of py,...,p, allowed by the conditions of no particle produc-
tion and conservation of momenta: basically, the set of momenta can only be reshuffled by
scattering.
Since we assumed the existence of an asymptotic region (of free motion) for any permutation
of particles, then the scattering process can be thought as a plane wave propagating from
one of these asymptotic regions to another by passing through boundary interaction regions.
Thus the propagation path can always be chosen in a way such that it goes through
interaction regions where only two particles are so close to interact. For example, let us
take those two particle being the particle 1 and 2, then such region is identified by

|ZE1—£U2|<<R, |£L'1—l'j‘>>R, |IL‘2—l‘j|>>R, ‘:L’i—{L‘j|>>R, ’i,j:3,4,....(3.6)

In this way only one particle at a time can overtake another, until all the particles starting
from the configuration (z1,p1),..., (zn, pn) have overtaken each other, to reach the config-
uration (z1,pn),. .., (zn,p1). All the other possible choices of paths connecting the same
initial and final configurations, passing also through boundary regions with more than two
interacting particles, have to give the same final result for the total scattering amplitude.
Not completely satisfied by this heuristic proof, we want to discuss a more rigorous ar-
gument, that dates back to [26] and [27]. For the reader interested in the details of the
demonstration we refer to those papers and to [28], while what follows is mainly inspired
by the review [10]. Demonstrations based on different approaches are given in [29] and,
using non-local charges?, in [30].

2See [31] for a definition of those charges on the basis of [30].



Let us start by considering a wave packet

+oo
P(x) = / dp exp[—a?(p — po)?] explip(z — z0)], (3.7)
—00
with position and momentum centered around xg and pg respectively. We act on 1 (z) with
an operator €'°@s, where ¢ is an arbitrary constant and Qs is a conserved tensor of order
s. The resulting wave function is given by

+oo
b(x) = / dp exp[—a®(p — po)?] explip(x — o)l , (3.8)

— 00
i.e. €°Qs|p) = el |p), since under a Lorentz transformation Qg transforms as s copies of
the total momentum P = Q.
Now, the wave packet is localized at a new position x = xy — scpgfl, that is where the new
phase is stationary (¢'(po) = 0 with ¢(p) = —a®(p — po)? + ip(x — o) + icp®). Thus the
charge with s = 1, the total momentum, translates all the particles by the same amount
c. In the case s > 1, instead, particles with different momenta are displaced by different
amounts. In what follows, actually, we only need a couple of conserved charges Qs, Q_s,
with s > 1 [28].
Let us then consider a scattering process with 2 incoming and m outgoing particles: the
related scattering amplitude is

a3y, am4-2 <p3> s >pm+2|5|plap2>a1,02 ) (3'9)

where the momenta are ordered as p; > pa;p3 > pg > - -+ > Pm+a. Now, the assumption of
macrocausality for the S-matrix essentially tells us that the scattering amplitude is nonzero
only if the outgoing particles are created after the incoming ones. In other words, the time
t12 when the incoming particle 1 collide with particle 2 has to be smaller than the time to3
when the slowest incoming particle (particle 2) interacts with the fastest outgoing particle
(particle 3) t23 > t12.

Since the charge ); commutes with the S-matrix, we can use it to rearrange initial and
final configurations without changing the amplitude:

a3,...,am+2<p3a cee 7pm+2’S’plap2>a1,a2 - as,...,am+2<p3a v 7pm+2’e_iCsteiCQs ’p17p2>a1,a2 .

(3.10)

This means that, with a suitable choice of ¢, t23 can be made smaller than ¢12, and, if any

of the outgoing particles is different from the incoming ones, then the amplitude vanishes,

following the macrocausality principle.

Therefore the only possibility is that one has just 2 outgoing particles with the same

momenta pi, pe as the incoming ones. With this we showed that the scattering has to be

elastic.

In order to prove the factorization, we have to consider processes with more than 2 particles.

In this case, we know now that, acting with a charge like in (3.10), we can separate as much

as we want the trajectories of the particles without changing the resulting amplitude, and



Figure 1: 3-particle scattering amplitudes.

then also the points of interaction between couples of particles (which we know now can
produce only couples of particle with momenta equal to the incoming ones): then the total
scattering can happen as a sequence of 2-particle interactions.

In other words, considering the 3-particle example, the three types of possible collisions
shown in Figure 1 can be obtained one from each other by suitable actions of €@ with
different values of c; all of them, anyway, commute with the Hamiltonian and the S-matrix,
then they have to give physically equivalent processes.

This equivalence is formalized in the famous Yang-Bazter equation (YBE) [32,33]:

523513512 = 512513523, (3.11)

where for simplicity we labeled the S-matrices just by the labels of the particles of kind
1,2, 3 involved in a three-particle process. We can write (3.11) in components in order to
show the matrix elements involved in a generic non-diagonal process, where exchanges of
flavors among particles are possible, in the following way (see also Figure 2):

D Saa(012)S2 (013)52 (03) = D Se2i (023)010 (013) Sz (Br2) . (3.12)

alag cias 0203 a2a3 ajcs cic2
C1,C2,C3 C1,C2,C3

The generalization to n-particle is straightforward. A 4-particle process can be always
separated in a 3-particle one, for which the YBE (3.12) is already shown, and three 2-
particle processes, by displacing a particle. Then the YBE is proven for 4-particle processes.
In the same way one decomposes a 5-particle scattering in processes involving at most four
particles, and so on.

Now we can understand better why in d > 2 the S-matrix of an integrable theory must be
trivial: essentially, in d > 2 it is always possible to move the trajectories of the particles to
create equivalent scattering processes where particles are not crossing each other.

4 2-particle S-matrix

From the discussion of the previous Section, it turns out that any n-particle scattering
process in integrable theories is completely determined by the knowledge of the 2-particle
S-matrix. Therefore, in this Section, we will focus on general physical properties and the
analytic structure of 2-particle S-matrices.
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Figure 2: Yang-Baxter equation.

4.1 Properties and analytic structure

Following the general definition (2.4), in the case of a 2-particle elastic scattering with
incoming (outgoing) rapidities 61, O2 (03, 1) we have 0; = 04,02 = 03 and S = S(6, — 62).
A 2-particle elastic relativistic S-matrix is then given by

1601, 602)7" = S (61 — 62) |61, 602)7 (4.1)

with 61 > 6, and represented graphically in Figure 3. In terms of Mandelstam variables,
u = 0 and #(f12) = s(im — #12), then the S-matrix depends only on one variable, say
S =5(s).
Now, we want to answer the question: how to determine the 2-particle S-matrix elements?
Let us begin from the constraints given by discrete symmetries usually respected by physical
QFTs. If the theory is invariant under reflection of space coordinates, i.e. under parity, it
means that looking at Figure 3 from left to right or from right to left has to be equivalent.
Namely, the particles 7 and k can be exchanged with j and [ respectively, leaving the
amplitudes unchanged:

SEHO) = S (0). (4.2)

Analogously, the symmetry under time reversal implies that the amplitude represented in
Figure 3 is the same if we look at it from bottom to top or vice versa, then by exchanging
particles ¢ and [, j and k:

55(6) = 55,(0). (4.3)

If a theory is invariant under charge conjugation, then we require that the S-matrix does
not change under conjugation of the particles involved in the scattering process:

SH(9) = S (0), (4.4)

where we denoted the charge-conjugated particles by barred indices.

Now, in order to study the analytic properties of the S-matrix, we recall the definitions
(2.11) of the Mandelstam variables. It is easy to understand that s,¢ and u are the center-
of-mass squared energies in the channels defined by the process i + j — k + [ (s-channel),



s-channel

t-channel

Figure 3: 2-particle elastic S-matrix element Sfjl((% —0s).

i+1—k+7j (t-channel) and i + k — [ + j (u-channel) respectively, as depicted in Figure
3:

s=(E;+Ej)?, t=(E+E)?, u=(E+Ep)?>. (4.5)
In a physical process, 0; —0; has to be real, then s has to be in the so-called physical region,
defined by sT = s 410 and s > (m; + m;)?, i.e. slightly above the right cut in the first of
Figure 4 (a).
Then let us study the analytical continuation of S(s) to the s-plane. We begin by imposing
unitarity in the physical region:

SH () (ST (sT) = apa. (4.6)

According to the analyticity assumption, the S-matrix in the physical region is the bound-
ary value of a function that is analytic in the whole s-plane, then the unitarity property
(4.6) can be extended to the so-called hermitian analyticity:

SE(s) = (S13)"(s). (4.7)

Adding to this property the time reversal symmetry, we get a stronger condition, that is

the real analyticity>:
Kkl kly*
Sij (s") = (Sij) (s), (4.8)

i.e. the S-matrix is real for real values of s and (m; —m;)? < s < (m; +m;)?. This means,
in general, that real S-matrices do not describe physical processes.

Another fundamental property constraining relativistic S-matrices is the crossing sym-
metry, meaning that the process in Figure 3 has to be read equivalently along the s- and

t-channels: )
kl ik
Sii(s) = S (1), (4.9)

3See an interesting discussion on hermitian and real analyticity of the S-matrix, and their interplay,
in [34] and references therein.
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Figure 4: S-matrix analytical properties in the s-plane (a) and #-plane (b). U and C' stand

for unitarity and crossing transformations, respectively.

where, as in (4.4), barred indices denote charge-conjugated particles or anti-particles, that
can be considered also as particles propagating backwards in time. In terms of the rapidity,
since t(0) = s(im — ), crossing symmetry can be written as

SH(6) = 57F(r — ). (4.10)

In particular, denoting by C the charge-conjugation operator, crossing symmetry can be
written also as

SE0) = CjnSpki(im — 0)C™ . (4.11)

Note that relation (4.11) involves a dynamical transformation - in contrast to unitarity or
discrete symmetries, where only the matrix form is involved - on the rapidity. As we will
see in Section 4.3 and in the examples of Section 8, crossing symmetry plays a fundamental
role in fixing the scalar factors of the S-matrices. It is a property that profoundly reflects
the relativistic invariance of the theory, since it uses the invariance of physical processes
under exchange of space and time, i.e. under rotation of the s-channel to the t-channel.
However, it is possible to generalise crossing symmetry to non-relativistic theories like
AdS/CFT thanks to its formulation in completely algebraic ways [17,19], that will be
discussed in Sections 4.2 and 6.

Turning back to the relativistic case, we notice that real analyticity (4.8) entails

SH(sT)SEN(s™) = opor, (4.12)

where s~ = s — i0. Equation (4.12) means that the S-matrix* has a branch cut between

“Except for the trivial cases of S = +1.
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the regions where s* and s~ are respectively defined, namely there is a branch point in

s = (m; + my)>.

threshold, i.e. it is a discontinuity point of the amplitude imaginary part (see more details

This is expected also since that point corresponds to the two-particle

on this aspect in [9]). Because of crossing symmetry, another branch cut starting from
s = (m; —m;)? towards —oo must exist, as depicted in Figure 4 (a)®. These are the only
two branch cuts if the S-matrix is factorized, since particle production thresholds for more
than two particles cannot appear.

Moreover, it is possible to show that the branch cut is of square root type, since unitarity
gives

S(s7)S,(st) =1, (4.13)

where §, is the S-matrix analytically continued below the cut around the branch point
(m; +m;)?, and then
Sy(s7)=8"1(s7) = 8(sT), (4.14)

where we used the real analyticity (4.12). The last relation means basically that a double
continuation around the branch point gives back the original S-matrix, i.e. the branch cut
is of square root type.

In order to show in a more concise way the analytical properties of the S-matrix, it is
convenient to switch from the variable s to the difference of rapidities, via the map

2m1m2

01 — 03 =log <8 —mi - m% + \/(S — (1 +ma))(s = (m1 = m2)2)> . (4.15)

Then the physical sheet maps to the strip 0 < Im(6; —6;) < 7, the second sheet corresponds
to m < Im(6; — 02) < 27 and so on, with periodicity 27i. Essentially, the branch cuts of
the s-plane open up in such a way that all the Riemann sheets are mapped into strips
nt < Im(f) < (n+ 1)m and S is analytic at the images inm of the branch points. In
conclusion, S(6) is a meromorphic function of # and its real analyticity implies that it is
real on the imaginary axis of 8. The main analytic properties of the 2-particle relativistic
S-matrix can be represented in the #-plane as in Figure 4 (b).

4.2 Zamolodchikov-Faddeev algebra

After having discussed the analytic properties of the 2-particle integrable S-matrix, let us
move to its algebraic features. To do this, we introduce a purely algebraic setup, that is
fully consistent with the properties studied in the previous Section and will make easier
the understanding of the algebraic structures discussed in Section 6. It will be also useful
to extend some properties to the non-relativistic case, as explained in Section 4.2.1.

Let us start by defining the creation and annihilation operators of excitations out of the
vacuum state |0), that is left invariant by the symmetry algebra of the particular integrable
quantum model under study:

A% (py)[0) = 0 = (0] A, () (4.16)

5A different choice of the branch cuts is not equivalent, since s = +00 are branch points too.
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In particular, the particles created by [p;)a; = Aq; (p;)|0) have momenta p; and transform
in a linear irreducible representation of the symmetry algebra.
Then the asymptotic states (2.2) can be written as

P1,D2s - D)l g = Aay (P1)Aay(P2) - - Aq,, (pn)|0) (4.17)
L, D2 - Pn) o an = Aan (D) - Aay (p2)Ag, (p1)]0) (4.18)

with p; > pa > -++ > p,. On the other hand, the conjugated operators A, (p;) generate
the dual states

a1 (D1, D25 - oal = (0|A" (p1) A% (p2) ... A% (pn) (4.19)
arsamon D1, D25 - onl = (0[A™(py) ... A% (p2) A (p1) - (4.20)

The operators Aq; (p;), A% (p;) are elements of an associative non-commutative algebra, the
so-called Zamolodchikov-Faddeev (ZF) algebra [11,35]. In a relativistic case, (4.17)-(4.20)
can be conveniently parametrised by the particles rapidities:

101,02, 00)0" s = Aay (01) Ay (02) ... Aa, (6)]0) (4.21)
101,02, 00) et s an = Aan(On) - Agy (62) Agy (61)10), (4.22)
arsazsnin (01502, On] = (0]A™ (61) A% (62) ... A®(6,), (4.23)
ar,azran (01502, On] = (0]A™(8,) ... A%(82) A" (61). (4.24)

For simplicity of notation, all the following equations involving ZF operators will be un-
derstood as acting on |0).

Defining the asymptotic states in this way allows to interpret the scattering processes as
simple reordering of ZF operators in the rapidity space. Indeed, writing explicitly the
asymptotic states of equation (4.1) in terms of ZF generators as in (4.21), (4.22) and
dropping the vacuum states, it becomes

Ai(01)Aj(02) = Ay(02) Ap(01) S5 (01 — 62) (4.25)

that is the commutation relation between the ZF algebra elements, and it can be interpreted
as definition of the 2-particle S-matrix. The ZF algebra is completed by the commutation
relations involving the annihilation operators (4.16):

AN(01)A1(0;) = SJ(01— 02) A (02) AF(61), (4.26)
AR(O1)Aj(02) = Au(02)Sf (02 — 01)A'(61) + 5(61 — 02)5] (4.27)

that generalize the usual bosonic and fermionic canonical commutation relations, corres-
ponding to S = 1 and S = —1 respectively. The d-function in the r.h.s of (4.27) is related
to the normalization of the states, that is ;(01|62); = 6(61 — 62)d;;.

Now, writing the commutation relation for the elements labeled by k and !

Ay(02) A(01) = SIP™(0y — 01) An (1) A (62) , (4.28)
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and plugging it into (4.25), one can show
Ai(61)A;(02) = SH («9 —02)S]" (02 — 01) A (61) A, (62) , (4.29)

that is equivalent to
SEH 01 — 02)S[™ (02 — 01) = 667" (4.30)

This property is also called braiding unitarity.
On the other hand, in order to get (4.6), also referred as physical unitarity, we have to take
the hermitian conjugation of (4.25):

AT (62) A1(61) = ()75 (61 — 02) A¥(61) A'(62) . (4.31)
Thus, exchanging 67 with 6 and permuting the ZF operators, we get
AN01) A7 (82) = (ST)i7(02 — 01) AL (62) A%(0y) . (4.32)

But we also know that (4.26) holds, then Sfj(@l —03) = (S’T)f}(Gg —01). Finally, using the
braiding unitarity (4.30), we get (4.6): SST = 1.

Exercises

1. We leave as an exercise the derivation of CPT invariance using the ZF algebra
and knowing that A;(0) — A;(—0) under parity and time reversal. The charge-
conjugation symmetry, on the other hand, requires that the ZF algebra maps to
itself under the transformations A4;(0) — At(ir+0)C, A;(0) — CTAl(ir+0), where
C is the charge-conjugation matrix defined by A4;(#) = C;;A7 and the superscript
t denotes the transposition.

2. Prove that, if the charge conjugation acts only on one sector of the 2-particle
space, one gets the crossing symmetry relation (4.11).

3. Show that the associativity property of the ZF algebra implies the YBE (3.11).

4.2.1 Non-relativistic case

In a non-relativistic model, the S-matrix does not depend on the difference of rapidities,
but separately on the momenta of the particles. Therefore, the ZF algebra generalizes to

Ai(p1)Aj(p2) = Ai(p2)Ar(p1)SL (p1,p2) (4.33)
Al(p) A (p2) = S} (p1,p2) A (p2) AF (1) , (4.34)
AF(p)Aj(p2) = Aulp2)SE (p2,p1) Al (p1) + 5(p1 — p2)oF . (4.35)
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Analogously, the YBE (3.12) becomes

Z S (p1, p2) S (p1, p3) SP283 (p2, p3) = Z S22 (pa, p3) S (p1, p3) SEL2 (p1, pa)
C1,C2,C3 C1,C2,C3

(4.36)
and the physical properties discussed in Section 4.1 can be derived using the properties of
the ZF algebra. For example, relations similar to (4.28) and (4.29) lead to the braiding
unitarity condition

Sfjl(pl,pQ)Sﬁ;n(pg,pl) = 5?5;71 . (4.37)

Together with relations analogous to (4.31) and (4.32), (4.37) gives the physical unitarity
condition

(N5 (b1, p2)Si" (01, p2) = 87°05; (4.38)

Furthermore, the properties of the asymptotic states under transformations of parity and
time reversal, respectively denoted by P and T,

P’p17p27 s 7p">i1,...,in - ’ —P1, = P2y, _p”l>i1,...,in ) (439)
] t
Tlorpze- o o) 0 = | = b1 —p2eeees =), (4.40)

written in terms of ZF operators as

PAi,(p1) .- Ai,(pn)|0) = Ai,(=pn)... Ai,(=p1)[0), (4.41)
TAii(p1) - Ai,(pn)|0) = Aiy(=p1) ... Ai, (=pn)|0), (4.42)

allow us to generalize the discrete symmetries listed in Section 4.1 for the relativistic case
in the following way (see Chapter 3 of [12] for further details on the derivation):

e parity: Sfjl(phpg) = S]l-lf(—p% —p1),
e time reversal: Sfjl (p1,p2) = SZJZ(—Z?% —p1),

while the symmetry under charge conjugation translates trivially to the condition
Sikjl(phpz) = S;%Z(pl,m) ; (4.43)
or, using the charge-conjugation operator C,
SH(p1,p2) = CirCjs Sy (p1, p2)C™ C™ (4.44)

where C;;C* = §¥.

Although crossing symmetry is a property that emerges naturally in the context of re-
lativistic scattering theories and at a first approach its generalization to systems where
time and space cannot be exchanged might seem impossible, it can be recovered, as all the
other properties discussed above, from an additional requirement on the ZF algebra [12,19].
Basically, we recall that in the relativistic case the crossing transformation entails an ex-
changing of a particle with an anti-particle and a kinematical map 8 — im + 6 on the
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rapidity of the conjugated particle. This translates to the maps p -+ —p and £ — —F on
the momentum and energy of a non-relativistic particle.
Then the ZF generators must transform as

Ai(p) = A3(—p) = Aj(—p)CT' 5 Al(p) — A (—p) = Cij Al (—p). (4.45)

Requiring that the commutation relations (4.33)-(4.35) are invariant under this transform-
ation implies

SH (1, —p2) = CinSpi(prp2)C™, (4.46)
S5 (=p1.p2) = CinSj(pr,p2)C™, (4.47)

that are the crossing symmetry relations for a non-relativistic 2-particle S-matrix.

4.3 General relativistic solutions

Turning back to relativistic S-matrices, we want to show here how they can be completely
determined using their analytic properties and symmetries. First of all, the YBE can
determine the ratios between S-matrix elements that belong to the same mass multiplet.
Thus, a general solution of the YBE can be written as

1
f0)

where R is the matrix of the ratios between amplitudes fixed by the YBE, f and Rf} are
meromorphic functions of 6.

SE0) = RIN0) (4.48)

Exercises

1. Show that R satisfies Rf} (0) = 55(5}“]%0 (from the commutation relation of the ZF
algebra).

2. Using the previous relation and the YBE (3.12), show that
nm kl _ <kl
and that the braiding unitarity reduces to

f(0)f(=0) = Q(0). (4.50)

Rescaling the rapidity by an arbitrary constant A (§ — A0), R is still solution of the YBE
and, for a suitable choice of A, in all the known cases it satisfies

RF(9) = R (in — 0). (4.51)
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Then the crossing symmetry reduces to

£(0) = fim — ). (4.52)

Therefore f(6) is fixed by (4.50) and (4.52) up to a function ¢(#), called CDD factor [36],
satisfying

6(6) = ¢(im — 6), (4.53)
6(6)6(~0) = 1. (4.54)

This ambiguity corresponds to the freedom to add zeros and poles with period 27i to f(0),
due to the infinite discrete set of solutions for ¢, in general. So, if we denote as fin(0)
the solution of (4.50) and (4.52) with minimal number of poles and zeros, then the general
solution for f is f(0) = fmin(0)P(0).

Another fundamental restriction for generic S-matrix elements is the invariance under the
symmetry algebra of the model under study. The corresponding constraints can be derived
by acting with the symmetry generators J¢, where a runs from 1 to the dimension of the
symmetry algebra, on the ZF relations (4.25):

JOAi(01)A;(02) = SE (01 — 02) T Ay(62) Ar(61) - (4.55)
The action of J* on the 2-particle states is given by

JOAi(01)A;(02) = (J)}1 (01, 02) Ag(61) Ai(62) , (4.56)

)

where (Ja)f} are the matrix elements of the 2-particle generator Jf,, that acts on the 2-
particle spaces as Ji, = J* @ [+ 1® J* Thus, the S-matrix invariance can be written in
matrix form as

(J°@I+1®J)S = S(J @I+ J%). (4.57)

Summarizing, the steps necessary to compute the S-matrix in an integrable theory are the
following:

e determine the structure of the S-matrix by imposing invariance under the symmetry
generators (by solving the equations given by the condition (4.57));

e find the ratios between the remaining undetermined S-matrix elements by imposing
the YBE (3.11);

e fix the remaining (minimal) overall scalar factor, up to CDD factors, by imposing
unitarity and crossing symmetry.

We will see some detailed application of this algorithm in few particular cases (sine-Gordon,
SU(2) and SU(3) chiral Gross-Neveu models) discussed in Section 8.

In the non-relativistic example of AdS5/CFTy, for instance, the S-matrix for the funda-
mental excitations was determined in [16], up to a scalar factor, imposing invariance under
two copies of centrally extended SU(2|2) symmetry algebras. Such S-matrix turned out to
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satisfy identically the YBE, while the crossing symmetry condition, implemented in [19]
and [17] through the algebraic frameworks illustrated respectively in the previous Section
and in Section 6, led to an equation for the scalar factor, that was solved in [37] (see also
the review [14]).

4.3.1 Purely elastic case

While elastic scattering essentially means that the set of outgoing particles is identical to
the incoming one, purely elastic scattering is further constrained by not having reflection
between particles. So, particles can be just transmitted and the S-matrix is diagonal:

Sl = 656585 . (4.58)

The YBE is identically satisfied and the system of equations of unitarity and crossing
symmetry is solved by a function S(6) with period 27i, given by [38]

(4.59)

SO) = [[/a(6):  fult) = 22L5")

with « belonging to a subset A;; of C invariant under complex conjugation. Indeed one
can easily verify that

fa(0)fa(0) = fa(2mi+0) fa (271 + 0), (4.60)

for any complex «. Periodicity implies that a can be chosen in the interval —1 < a < 1.
Poles are at ima, while zeros are at —ima, then they are contained in the strip —m <
Im(f) < .

In case of neutral particles (particle = antiparticle), then S;;(6) = S;;(ir — ) and the
solution of unitarity and crossing is a product over arbitrary « of the functions

Fa(‘g) = fa(e)fa(iﬂ—_g)7 (461)

with simple poles at 6 = ira, in(1 — «), zeros at § = —ira, —in(1 — «), related by cross-
ing. Anyway, unitarity and crossing are not sufficient to fix the sets of poles/zeros A;; of
[Toc A fa or [T, Ay F,. We will see in the next Section how it is actually possible to fix
them.

5 Poles structure and bootstrap principle

Since in the region (m; —m;)? < s < (m;+m;)? (0 < Im(6;;) < 7 in terms of rapidity) it is
possible to create, from incoming particle of masses m; and m;, only 1-particle states with
m < m;+my;, then simple poles of the S-matrix in that range of s are generally expected to
correspond to bound states. In order to clarify this correspondence with a simple example,
let us consider the one-dimensional scattering problem associated to a quantum mechanical
system with delta potential.
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5.1 Delta potential scattering problem

We want to solve the Schrédinger problem corresponding to the Hamiltonian

2

H= 2p—m+V(x), (5.1)

with potential V(z) = —2¢d(z) and g > 0. The Schrédinger equation

2m da?

2 2
(f‘d-nw@)szw, (5.2)

can be conveniently rewritten as

d? 9
(- oz~ 20000) ) 1) = 21, (5.3
by rescaling g — % g and defining k2 = F Qh—@ We look for solutions of (5.3) in the following
generic form

(5.4)

() = Ael*? 4 Be=kT .z <0,
| Cée** 4+ De T 1> 0.

Since we want to consider the scattering of incident particles coming from the left and
being reflected or transmitted by the J-potential barrier, then we have not incoming waves
from the right, i.e. D = 0, and A, B, C are the amplitudes of the incoming, reflected
and transmitted wave packets respectively. These coefficients can be found by solving the
continuity condition of the wave function across the point x = 0

»(07) =9(07), (5.5)

and the discontinuity condition on the first derivative of ¢(x) given by integrating equation
(5.3) between € and —e, with € — 0

Y(07) = ¥'(07) — 299(0) = 0. (5.6)
Condition (5.5) gives
A+B=C, (5.7)
while (5.6) implies
ikB+¢9C =0. (5.8)

Thus, the transmission and reflection coefficient are, respectively

C k B ig
T_Z_k:—ig’ R_Z_k—ig' (5.9)

If k is complex, its imaginary part contributes to the real parts of the exponentials in (5.4).
Moreover, both the transmission and reflection coefficients in (5.4) have a pole in k = ig,
but we can still normalize the incoming wave function by setting A = 0. Thus, at the
value k = ig, with g > 0, (5.4) gives a physically admissible solution, i.e. decreasing to
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Figure 5: S-matrix poles on k- and E-plane.

zero at large distances, with just outgoing waves and not incoming ones: it corresponds to
a bound state.
Moreover, considering the time evolution of (5.4)

k2

Y(z,t) = e omah(x) (5.10)

we see that no solutions can exist with k = ki +ike (k12 € R), k1 # 0 and k2 > 0, since
(5.10) would increase exponentially with time in some channel. This would contradict the

conservation of probability, then there are no poles of the S-matrix with non-vanishing real
part in the upper half plane of k.

Poles of the S-matrix with negative imaginary part lead still to unphysical states, since the
corresponding amplitude increase exponentially in a given channel, but such divergences at
large distances are compensated by exponential decreasing amplitudes in another channel,
giving an overall conservation of probability.

In particular, purely imaginary negative poles, that can be realized in our §-potential case
by considering g < 0, take the name of wvirtual states.

With k; # 0, instead, we have a so-called resonance, since it can be shown [9] that the
corresponding cross section takes the typical shape of a Breit-Wigner distribution.

In summary, if we parametrize the S-matrix with the energy E, then S(E) has a cut on
the positive real axis and the region Im(k) > 0 corresponds to the first (physical) sheet,
while the region Im(k) < 0 maps to the second or unphysical sheet. Moreover, poles on the
negative real axis in the physical sheet correspond to bound states, resonances and virtual
states are poles on the unphysical sheet, with the latter placed on the negative real axis,
as in Figure 5.

5.2 Bound states and bootstrap equations

n
i
i and 7, a generic relativistic S-matrix can be written as (see Figure 6)

SkL(g 7F%R”F£l 5.11
ij()—e_iu?ja (5.11)

Close to a simple pole 6 = iu?;, corresponding to a bound state n formed by two particles
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Figure 6: Scattering process associated to a bound state.

where R,, is the residue and FZ,FM are projectors of single particle (i, 7,k and [) spaces
onto the space of the bound state n.

The mass of the bound state is given by

2 2 2 o n
§ =m;, = mi + mj + 2m;m; cos u;; .

(5.12)
It is interesting to notice that this relation has the geometrical meaning of the Carnot
theorem for the triangle of the masses, as illustrated in Figure 7.

The main idea of the bootstrap approach is that the bound states can be considered on the
same footing as the asymptotic states describing fundamental particles, even though the
bound states can have bigger masses. Indeed, the ZF element describing bound states can

be formally defined as

B,(0) = hmA (0 — 1u 5 —€)A;(0+ 1u e, (5.13)

where 4 = m — u and the angles ul u are defined according to the Lh.s. of Figure 8.

in’
Therefore, the S-matrix for the scattermg between any particle £ and a bound state n,
formed by the fusion of the particles ¢ and j, can be derived by using the new bound
state ZF elements (5.13): in a simple diagonal case it is given by the following product of

fundamental diagonal S-matrices:
Sien(0) = Sga(0 — 1)) Sy (0 + i) (5.14)

In the non-diagonal case, the S-matrix is projected onto the bound states channel by the
vertex functions defined by (5.11) (see Figure 8):

TSt (0) = S (6 — i),) S} (6 + iy )Tl (5.15)
where the repeated indices are summed over 1,..., N, with N being the dimension of the

symmetry algebra.
In this way we can take into account the possibility to have non-diagonal scattering between
fundamental particles and bound states. This is the case of the SU(3) chiral Gross-Neveu
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Figure 7: Carnot theorem interpretation of relation (5.12).

model, for instance, that will be discussed in Section 8.2. However, usually bound states

and fundamental particles have different masses and then they scatter diagonally: this
means that k =1 and n = n' in (5.15), that reduces to

™ Spn(0) = SEV (0 — 1wl )™ (0 + i, )T

o RN ki i/~ kg )=

i (5.16)

Furthermore, the bound state-bound state S-matrix can be calculated by

TS (0) = S0 — ial,) S (0 + i, UL (5.17)
namely by replacing the incoming (outgoing) particle k£ (I) in Figure 8 by the incoming
(outgoing) bound state m (m'). In this way it is possible to compute all the S-matrices for
all the bound-states of the theory. We will see in Sections 8.1.2 and 8.2.2 some concrete
use of these equations to derive the corresponding bound states S-matrices.

In terms of the ZF algebra elements, we can rewrite (5.13) in a more formal way as

91+92> (5.18)

Ai(01)A;(02) = > NJB, ( :

n

O —imm
01 szluij

where N7 is 1 if By, is a bound state of 4; and A; and 0 otherwise. The fusion rules (5.18)
must be consistent with the symmetries: N;i 7 0 only if charges C; satisty Cy, = C; + Cj.
Then the bootstrap entails constraints on the charges. For example, given some charges
eigenvalues with spin s w? () = y2e*?, then these have to satisfy the following consistency
bootstrap equations

75 = e 4 e Gn (5.19)

(2

6 Hopf algebra interpretation

The Hopf algebras (see part of [31] and [39] as introductory reviews on this subject) can
be an useful tool for writing in a full algebraic way the symmetries of an S-matrix and
to determine completely the S-matrix itself. The basic idea is to add to generic algeb-
ras some structures allowing the rigorous definition of operations over tensor products of
representations, necessary to define multi-particle states with additive quantum numbers.
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Figure 8: Bootstrap equation.

Let us consider, as an example, the universal enveloping of a Lie algebra. It is the tensor
algebra T'(g) of a Lie algebra g: &% ,g®"
tensor product

. It has a multiplication corresponding to the

(@1 ® - Rap) (1@ Qbp) =01 @ Rap b1 @+ @by, . (6.1)

Then the quotient algebra U(g) = T'(g)/I, where I is the ideal generated by elements of
the form AB — BA — [A, B], with A, B € g, is a Hopf algebra if a coproduct A, a counit
e and an antipode ¥ are defined (see [31]). In particular, in this case they are explicitly
given, VJ € g, by

AJ)=J@1+1eJ; A =I81; (6.2)
e(J)=0; e =T,
() =—J; £(1)=1.

So, for example, if applied to the spin operator S, in a space of 2-particle states classified
by the spin eigenvalues s; and ss, the coproduct gives

ASZ|8182> = (Sz RI+I® Sz)|5152> = (51 + 82)|5152> R (65)

that is exactly what one expects from the action of a Lie algebra generator on a tensor
product state. In order to generalize the action of Lie algebras on higher tensor products,
higher coproducts can be defined as follows

AP = I@A)AJ)=ARDAWJ) =10l J+I10JI+JQIx1, (6.6)
AP = (Il - @ A)ACPD

still giving the desired action of the algebra as a sum of the actions on the single states
involved in the tensor product state.
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As we have already seen in Section 4.3, when we act with a symmetry generator J on a
2-particle state that belongs to a tensor product of two representations, we compute:

(JRI+1I® J)|p1,p2) . (6.8)

Thus, the condition (4.57) for the compatibility of the S-matrix with a given symmetry
algebra can be rewritten as

[A(J),S]=0. (6.9)

Moreover, if we equip the symmetry algebra with an antipode 3, the antiparticle repres-
entation can be derived by

7 [2(J)] =Cc 7)), (6.10)

where C is the charge-conjugation matrix, m denotes the matrix representation and the
superscript ¢ means transposition.
Now, let us consider a quasi cocommutative Hopf algebra A (see [31] for the particular case
of Yangians). By definition, this is equipped with an invertible element R belonging to
A ® A such that

AP(a) = RA(&)R™!; Vae A, (6.11)

where A’ = PA, P is the permutation operator and R can be written as the sum R =
Ei,j ri ® rj, with r; € A. Let us recall the properties satisfied by R: in particular, if we
define
Riz=R®I; Rys =I@R; Riz=» rolar, (6.12)
]
a quasi commutative Hopf algebra is called quasi triangular if
(A®DR =Ri3Ra3, (6.13)
(I® A)R =RizRaz, (6.14)
and R is called universal R-matrix.
It can be shown [40] that the universal R-matrix of a quasi triangular Hopf algebra satisfies
Ri12R13R23 = RazR13R1z2, (6.15)
TohR=>I2S HR=R". (6.16)

Relation (6.15) is obtained by comparing the expression of (I @ A°)R written as
I®PAR = (I® P)(I®A)R = (I® P)R13Ri2 = Ri2Ras, (6.17)
where we used (6.14), and
I AP R =12 RAR HR =12 R) I A)RIRR ') = RazRi13R12R03 , (6.18)

where definitions (6.11) and (6.12) have been used. Thus, the comparison of (6.18) with
(6.17) gives (6.15). For a demonstration of (6.16), the interested reader can look at Section
2.2.1 of [43], for instance.
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A spectral parameter 6 can be introduced by an automorphism Dy of the Hopf algebra A,
such that Dngl = D9+9/, Do =1 and

(I1® Dg)R = (D_g © )R = R(0). (6.19)
Then (6.15) becomes
R12(0)R13(0 + 0/)R23(9/) = R23(9/)R13(0 + 9/)R12(9) , (620)

and its matrix representation, with the identification S = PR, gives the YBE (3.11).

It can be also shown that properties (6.16) and (6.13)-(6.14) are respectively equivalent
to the crossing symmetry [41] and the bootstrap equations (5.14) for the S-matrix [42].
Therefore, this algebraic formulation, alternative to the one mentioned in Section 4.2, can
be useful to introduce the concept of crossing symmetry in non-relativistic theories, as done
in [17] for the AdSs/CFTy case, for instance.

7 Form factors

The knowledge of the 2-particle S-matrix in an integrable theory is a fundamental step
towards the determination of its correlation functions, that are necessary to calculate the
physical quantities of the model.

Indeed, an essential ingredient for the full solution of a (141)-dimensional integrable theory
is the determination of its generalized form factors®, that are the matrix elements of local
operators evaluated between out and in asymptotic states:

b1 ond01 - - O | O@) Ot - )il - (7.1)

We will see how these are deeply related to the S-matrix and the bootstrap program
discussed in the previous Sections.

The correlation functions can be related to a special class of generalized form factors by
inserting”

1_Z/d91 2101, )0y, 0y (7.2)

into a two-point function

(O( Z/ L “0|0(z 2)[01,. .., 0n)y (01, .., 0,]O(0)[0) . (7.3)
We see indeed that this involves the actual form factor
F2(01,...,0,) = (0]0O(0)|61, ..., 0,)i, (7.4)

that is indeed defined as the matrix element of a local operator placed at the origin, between
an n-particle state and the vacuum.

5Though the form factor program succeeded in calculating exactly the correlation functions of the Ising
model [44] only.

"In what follows we will collect the color labels ai, ..., an in the notation a.
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Figure 9: Crossing relation for the form factors.

As for the S-matrix, let us discuss the properties satisfied by the form factors F© (). From
the constraints given by these properties we will get fundamental hints to find their general
solutions.

First, in the case of local scalar operators O(z), relativistic invariance implies that the
form factors are functions of the rapidities differences 0;; = 0; — 0;:

F2(01,...,0,) = F2 (012,013, ..., 0y, 0p1p) 5 i< 3. (7.5)
For operators of generic spin s, we have instead
F201+A,....00+A) = e F2(01,....0,). (7.6)

In what follows we will focus on the case of scalar operators.
It is possible to show that CPT invariance implies, under replacement of in by out states,
the following simple relation

(010(0)|61,...,0,)5" = F2(—0;;) ; 1<i<j<n. (7.7)

a =

The general property satisfied when a particle is moved from the out to the in state,
instead, takes the name of crossing: it is depicted in Figure 9 and is formalized by the
following relation® (see [45] for instance):

i GO 0000 O, ) = ED 00 OO, )

= E?..im_l;imjm+1...jn( /17 cee 79;n71|9;n +im, 0m+17 ) 9”) + Z 5ijk6(97/n - 016) (78)

k=m+1
k—1
< LT S (00 = ) Fiyion s odisiissomgn O -+ 01Ot Ot Oty -, O)
=1
For example, in the 2-particle case, this property reads
% (0110(0)[82)5; = Fiya, (612 +im) + ba10,6(612)(O) . (7.9)

8 All the formulas of this Section, for simplicity, are written for a diagonal case with neutral particles.
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Figure 11: Watson equation for periodicity under shifts of 2mi.

Here we just stated formulas (7.8) and (7.7) without proof, however it is possible to derive
them on the basis of the the LSZ reduction formalism [46] and the maximal analyticity
assumption, i.e. possible singularities of the form factors can occur only due to physical
processes like the formation of bound states, similarly to the analyticity property assumed
for the S-matrix. The related derivations can be found in Appendix A of [24], for instance.
The symmetry properties satisfied under permutations of 6;,6; and shifts by 2ri, repres-
ented in Figures 10 and 11 respectively, are called Watson equations after [47], and in a
diagonal case they read
FS iagan (01,100,605, ..., 0,)

=F9 (01,....05,05,...,00)S0a,(055) 5 j=i+1, (7.10)

ai...a;Q;i...0n

as...anai

F2 (01 + 27i,...,0,) = F) (62, Oy 01) = [ [ Sasar (05 — O1)F (61,...,60n) . (7.11)
1=2

They can be derived, in the case n = 2 for example, by using the definition of the S-matrix,
factorization and CPT invariance:

Fila,(612) = (0[0(0)]0162)5",, = (010(0)]6162)5%%, Sayas (612)

Fg 0y (—6012)Saya, (612) (7.12)
Fo, (im—612) = 24 (61]O(0)[62) = "2 (6:1]O(0)]62) "
= Fylo,(im +012), (7.13)

where the next-to-last identity is due to the triviality of the 1-particle S-matrix.
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As in the case of the S-matrix, we look for general solutions of the Watson equations and
the other conditions listed above in the form of a minimal solution me(Hz]) without poles
and zeros in the physical strip 0 < Im(6;;) < 7, multiplied by a factor K,(6;;) containing
all the information about the poles (zeros) structure. For scalar operators, this reads

FO(Or,...,00) = K$(01,....00) [ [ Farir (6 (7.14)

a;a;
1<j

In the case of n = 2, we are saying that the most general solution of the Watson equations
[21]

Fla (012) = Fo (=012)Sayar (012) , Fipa, (i — 012) = Fiy, (im + 612), (7.15)
is given by F2, (0) = K2 ,,(0)Fmin(9), with K ,,(0) satisfying
(@] O (@] :
Kg 0,(0) = Kg o, (—0) = K, (2T +0) . (7.16)
If +4cv,...,+lar are poles of F a1a2(0) in the physical strip, then

1

sinh 9+210"“

(7.17)

L
K2, (0)=N°@ .
a1a2( ) ( ) ];[ sinh 6—504;C

For scalar operators, as we will see in the examples of Sections 8, the normalization factor
N9(0) is a constant and the poles of K©(#) contain all the information about the operator
O. If in addition (O) = 0, N© can be fixed using relation (7.9):

a{01010)q = Fo(ir). (7.18)

On the other hand, Cauchy theorem implies that, given a contour C' enclosing the strip
0 < Im(#) < 27, F™n () satisfies

aiaz
d 1 dz
1t g Fyin 1t g
—— : 22 - a1a2( ) —/ %logsa1a2(z)v
8mi J o sinh® 2% Fg%g(z +2mi) 8w ) o sinh® £

where we used the property (7.11) in the last equality. Then we can calculate the minimal
solution F"" () entirely from the S-matrix element Sg, q,(6)!

Regarding the factor K© (1), it has to satisfy the Watson equations with S(f12) = 1, then
it is symmetric in 812 and periodic with period 271, i.e. it is function of cosh #15.

In general, n-particle functions K (61,...,#,) have poles when a cluster of k particles have
the kinematic configuration of a i—particle state. In particular, this happens when the set
of in particles contains a particle-antiparticle pair with opposite momenta, e.g. 015 = iw

(see Figure 12):

as...an
Oro=imr — 3

Res FO(01,...,0;,0;,...,0,) = 2FS _ (03,...,6,) [1-1‘[5&2%(02—91-)] . (7.20)
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Figure 12: Recursive relation from the residue at 615 = im.

that gives a recursive relation between n- and n — 2-particle form factors. Property (7.20)
follows from realizing that in (7.8) the particle m can be also moved to end of the in
particles set:

Fi?---im;jm+1---jn( /17 cee 70%‘97714-17 s 7971) (7-21)

n
= E?...im,l;jerl...jnim( i’ oo vein—l|0m+1’ ooy O, Q;n - iﬂ-) + Z 61m]k5(9;n - Hk)
k=m+1
n

| | @ / /
X Sjljk(el _Hk)Fil~--7:m71;jm+l--~jk—1jk+1-~~jn( 1,...,0m71|9m+1,...,ek_1,0k+1,...,0n).
I=k+1

Thus, comparing the analytic parts of the crossing relations (7.8) and (7.21) we can obtain
the first periodicity relation in (7.11), and if we evaluate that at 6 ~ 02 we get

f(ba,...,0,)

O .
Falag.“an ((91 + 1, (92, e Gn) 01 — 92 Er (722)
) f(Os,...,0,)
FO n — ~N — 2
a...ana1 (927 79 791 17‘-) 01 _ 02 +1€ ? (7 3)

for some function f and small e. Hence, plugging (7.22) and (7.23) into (7.8) and (7.21)
respectively, in the case m = 1 and evaluated at 67 ~ 63, and comparing the J-function
parts, one gets

f(Oa,...,0,) =2iFS , (05,...,0,) [1 — T Saza; (62 = 6:)| (7.24)

and then (7.20).
A further recursive relation, depicted in Figure 13, connects n- and n — 1-particle form

(12

factors if there is a bound state pole at 12 = iu}, ), for example?:

Res  FO(01,...,0n) = /2R T\ FO oo o (02,05, 0n), (7.25)

9By iu:(éz), we denote the position of the pole corresponding to the bound state (12) made of particles

1 and 2.
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Figure 13: Recursive relation from the residue at 619 = iug122).

where 0(19) = (61 + 02)/2, R(1g) is the residue of the S-matrix at 0 = iuglf) and Fglf)

projects the spaces of particles 1 and 2 onto the space of the bound state (12), as defined
in (5.11).

A derivation of (7.25), making use of two-point correlators, the Watson equation (7.10)
and the residue of the S-matrix (5.11), can be found, as all the others discussed in this
Section, in Appendix A of [24]. A few examples of solutions in very simple cases are given
in Sections 8.1.3 and 8.2.3. The interested reader can look at [9,21,22,24,25,72] for further
details.

8 Examples

As promised, in this Section we specialize the properties and results of S-matrices and form
factors, discussed above for generic (141)-dimensional integrable theories, to two relevant
examples of quantum integrable relativistic models: sine-Gordon and chiral Gross-Neveu.
At the end of the Section, we will also summarize recent developments about the S-matrices
of AdS/CFT correspondences.

8.1 Sine-Gordon

The quantum sine-Gordon model (see [73] for the discussion of the classical theory) is a
(141)-dimensional integrable!” theory of a bosonic scalar field ¢, described by the following
Lagrangian density:

1 5  m?

‘CSG = i(aﬂgﬁ) + ﬁ(COS BQZ) — 1) s (81)
where p© = 0,1 and 8 is a coupling constant. In what follows we will use a parameter &
given by

g1
&= ) —l (8.2)
8

In particular, the coupling constant defines two distinct regions for 82 < 4m (¢ < 7)
and B2 > 4 (¢ > w), which are called respectively attractive and repulsive regimes.

Tts quantum integrability has been shown in [48,49].
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These names are due to the presence of bound states solutions in the attractive case
and their absence in the repulsive one. As we will see at the end of this Section, the
elementary excitation of the bosonic field ¢ corresponds to the bound state of a soliton
and an antisoliton, that classically are solutions of the equation of motion associated to the
Lagrangian (8.1), reviewed in [73]. The quantized solitons are the fundamental excitations
interacting through the S-matrix that we are going to study in the next Section. As shown
in [50,51], they can be put in correspondence with the self-interacting Dirac fermions
described by a (1+1)-dimensional theory, called massive Thirring model (MTM), defined
by the following Lagrangian density

Lorrar = $(id" — mp — Ty vy, (8:3)

where v# are the two-dimensional Dirac matrices and ¢ is a coupling constant related to

the sine-Gordon £ as [50]
47 g

7z =1+ — (8.4)
In particular, at 42 = 47 (¢ = 7) the theory describes a free fermion.

The sine-Gordon model possesses an O(2) symmetry, and we will use this to constrain the
matrix form of the S-matrix. In general, the O(N) symmetry tells us that the spectrum of
the fundamental excitations consists of a multiplet of N particles of equal mass, denoted
by A;,i = 1,...,N. Moreover, the commutation relations corresponding to (4.25) are

constrained to be [11]

N

Ai(el)Aj(Qg) = (5,']‘51 (91 — 92) Z Ak(QQ)Ak(Ql) (8.5)
k=1

+SQ(91 — 02)14](02>AZ(91) + 53(91 — 92)141((92)14](91) . (8.6)

8.1.1 Solution for the exact S-matrix

The O(2) symmetry group is the group of orthogonal matrices in two dimensions, and its

0 -1
(2 7) -

Now, we can equip this algebra with the operations and properties of a Hopf algebra and in

Lie algebra is generated by

particular we can impose the invariance of the S-matrix under O(2) by using the coproduct
(6.2)
[A(J),S]=0. (8.8)

Solving the system of equations given by (8.8) and requiring parity and time reversal
invariances, one gets the following matrix structure:

S1+ 52+ 53 S1
Sy, Ss
S = . 8.9
¢ Ss Sy (8.9)

Sl Sl+S2+SB
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Written in terms of the ZF elements A;(6), A2(0), this is equivalent to (8.6) for N = 2.
Following [11], we define the soliton and antisoliton ZF elements as

soliton  s(6) = A1(0) +1A2(0), (8.10)
antisoliton §(0) = A1(0) —1A42(0) . (8.11)

In this new basis, the ZF commutation relations become

8(91)5(92) = ST(Hl — 92)§(92)8(01) + 53(91 — 92)8(02)5(91) , (8.12)
8(91)8(92) = 5(91 — 92)8(92)8(91) s (8.13)
5(91)5(92) = 5(91 — 92)5(92)5(91) , (8.14)

where St and Si denote the transmission and reflection amplitudes respectively, and in
terms of 51,52 and S5 they read

S(B) = Ss5(6)+ Sa(6), (8.15)
Sr(8) = S1(6)+ Sx(6), (8.16)
Sr(0) = Si(0)+ Ss(6). (8.17)

Then the S-matrix takes the form

St Sr

1
Sn Sr (8.18)

SSG =
S

Imposing crossing symmetry on this S-matrix and using the charge conjugation matrix

Cij = d;;, one gets

S(0) = Sr(ir —0), Sgr(0) =Sgr(ir —0), (8.19)
while unitarity entails
S(O)S(-0)=1, (8.20)
S7(0)St(—0) + Sr(6)Sr(—60) =1, (8.21)
S7(0)Sr(—0) + Sr(0)Sr(—6) =0. (8.22)

The YBE (3.12) fixes the ratio S7/Sg, as mentioned in Section 4.3. In details, imposing
the condition (3.12), one obtains

Sr(012)Sr(013)ST(023) + ST(012)5(013)SR(023) — S(612)ST(013)SR(023) =0, (8.23)
SR(012)5(013)SR(923) + ST(912)SR((913)ST(923) — 5(912)53(913)5(923) =0. (8.24)
These constraints were solved, in terms of the ratios S3/S3 and S;/S3 of the elements
appearing in (8.9), in the Appendix A of [11]. In particular, those ratios were respectively

given as solutions of differential equations obtained by differentiating the YBE (8.24), with
boundary conditions satisfying crossing (the second of (8.19)) and unitarity (8.21)-(8.22).

32



Fulfilling all these constraints leaves actually a free parameter, that can be fixed to be
proportional to £ by comparison with semiclassical results [11]. Finally, Sg and St result
to depend on S in the following way

sinh %9 isin %2
sinh 70T =% sinh %
Hence the crossing relation for S(6) can be written as
sinh 77“172—9)
sinh %

Now, the first step to find a minimal solution of (8.20) and (8.26) for S(f) is to write (8.26)
in terms of I' functions by using the property sinh wz = 7 [[(1 + iz)T'(—iz)] "

S0) = F(Hi%)r(_i%) S(ir —6). (8.27)
e (e)

Then, taking an ansatz for S(0) satisfying (8.27)

r(1+if)
S@) = — (8.28)
r (g + 1%)

we multiply it by a factor f() such that the corrected S(6) now satisfies unitarity (8.20)

r(1+ig) r(i-i) r(z-if)
f(0)f(=0) =1 = f0) = ——<9(00), (8.29)
r(z+i2)r(z-if) 7 r(l—ig)g
with ¢(#) such that S(0) satisfies crossing again

F(l—ig) 0 _F<1+’g+i§)g(m_9) :»g(e)—r(lJrgHg)h(e), (8.30)

and so on. At the end of this recursive procedure, one gets the infinite product
0 r(1+(2k+1)g—i§>r(1+2kﬂ+iﬁ)
o (1 +(2k+1)T + 5) r (1 +2kT —i€>
((Qk: +1)T — 'E) r ((2k: o)
((2k + DT+ g) ((2k +2)

S() =

+if)
8.31
) (8.31)
e
where we put an overall minus sign since the sine-Gordon S-matrix, from the discussion
n [52], has to satisfy S2%(0) = —1. The result (8.31) can be also derived using the

mm PN
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technique explained in [37,14]: introducing the shift operator D = e%rae, such that Df(0) =
f(0+ir/2) and fP =P8/ we can write the crossing relation (8.27) as

sopro . L0 .

)

that is formally solved by

S(0) = (g r(-ig)] |
[F (1 — 1§> r (1%)} =

The exponents D*! /(D + D™!) can be expanded at small or at large D: the choice should
be consistent with the minimality condition, 4.e. the absence of zeros and poles in the

(8.33)

physical strip, of the resulting S(6). In particular, the factors in the r.h.s. of (8.33) can be

written as
r (1 + 1Z> P exp [— S (1" D22 log T (1 + 1Z> o (8.34)
n=1
0\ DipT >0 ) 0
r (—1> = exp [— Z(—l)”D "logT’ <—1)] , (8.35)
: 2 :
r (1 - 19) Pl =exp |— i(—mp%—? logT’ <1 - 19> : (8.36)
£ —~ £
0\ i o0 o 0
r (1{) = exp [— Z(—l)”D "logT’ (—1§>] . (8.37)
n=1

Thus, we get the product (8.31). Regularizing the sums in the exponents introduces an
overall constant, that is set to —1 by the aforementioned condition S2¢(0) = —1. Moreover,
using the following integral representation of log I’

—tx

log I'(z) = /OOO % [(x et 61__6_61 , (8.38)

(8.31) can be recast in the following compact integral form

S(0) = —exp | —i / T Ginor| . (8.39)
o t sinh % cosh It

At the specific value £ = m/N, the soliton-soliton amplitude was already determined in
[53, 54], later confirmed by the exact derivation, on the basis of crossing and unitarity,
of [55]. In the limit of & — 0, expressions (8.25) and (8.31) agree with the semiclassical
results of [53, 56].
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Another way to determine (8.39), that can be found in [57,58], uses a trick similar to that
used for the derivation of the 2-particle minimal form factor (7.19):

log ST(G) =

L e o [C et ) (8.40)

o 2misinh(z —0) ). 2nmi sinh(z — 6) ’

where C' is a contour encircling the strip 0 < Im(#) < 7. Unitarity and crossing relations

imply 5 ,
Sr(2)Sp(ir + 2) = SZSS};E: : 2 . (8.41)

The ratio St/Sgr can be obtained by solving (8.24), that gives

St(0)  sinh A0
= . .42
Sgr(f)  sinh Aim (842)

Again, \ is a free parameter that can be fixed to A = /7 by comparison with the known
semiclassical expansion of the bound states masses [11], that will be discussed in the next
Section. Then, plugging (8.42) into (8.41) and using (8.40), one easily gets (8.39).

8.1.2 Pole structure and bound-states

It can be easily seen in (8.31) that S(6) has a set of poles in § = in, for n = 1,2,....
On the other hand, S7(#) and Sgr(6) are singular respectively in § = i(m — n) and 6 =
i(mr—n&),0 = in&, withn = 1,2,.... These poles belong to the physical strip 0 < Im(0) < 7
only if £ < m: as anticipated above, this is indeed the so-called attractive regime. This
implies also that S has poles in the s-channel, while St and Sg in the t-channel. In the
so-called repulsive regime & > m, instead, the poles move out of the physical strip, and
therefore do not correspond to particle excitations.
If we consider the following combinations of S-matrix elements with defined charge-conju-
gation parity

S2(0) = S1(60) + Sr(0), (8.43)

then S has poles in § = i(m —n&) for even n, S_ for odd n. These bound states are called
breathers, with mass spectrum given by [53,59]

mn:2MSin%£; n=1,...,N; N<[7T], (8.44)

where [z] denotes the integer part of x.
The S-matrices for the bound states can be derived by defining the following ZF operators
B,

0, + 6 _ _
B, (122> = [5(62)5(01) + 5(62)5(01)]lg, _g,—i(r—ng) ; for neven, (8.45)

0L+ 0 _ _
B, (122> = [5(62)5(01) — 5(62)s(01)]lg, g, —i(r—ng) ; for nodd,  (8.46)
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that create the mth breathers. Then the bootstrap equations (5.15) can be written as
commutation relations of bound state and soliton, or antisoliton, ZF generators

$(01)Bn(02) = S™ (612) B, (02)s(01) (8.47)
5(01)Bn(02) = S™ (612) B, (02)5(01) (8.48)

while the S-matrices for scattering between bound states are calculated by
B (61) B (62) = S™™(012) By (02) B (61) . (8.49)

Alternatively, the breather-particle S-matrix can be calculated using (5.16). The projector
'’ is the eigenvector of the S-matrix corresponding to its singular eigenvalue [60]. Indeed,
the S-matrix is diagonalized as follows

SE(0) = TES(O)T5, (8.50)

where S., with e = 1,...,4, are the eigenvalues and Féj the corresponding eigenvectors.
One of the eigenvalues turns out to be the singular combination S_(6) as defined in (8.43),
while I'7' = (0,-1/4/2,1/1/2,0). Then one gets the following amplitude for the lowest
bound state Bj:

1
SW (4, —6y) = ) [S7(013)5(014) — Sr(013)Sr(014) + S(013)S7(014)]
93—94:i(ﬂ'_§)
_ sinhfp +isin s ‘ (8.51)

sinh 815 — isin 7%5

Actually, this is the only amplitude needed to describe the single breather-particle scatter-
ing, since only S_ has a pole at § = i(m — n§), for n = 1.
On the other hand, using (5.17), one can get the following breather-breather amplitude

_ sinh 6 +ising

A)gy = 27 T 275
§0) sinhf —isin¢’

(8.52)
whose expansion in powers of 32 has been successfully compared to the perturbation theory
for the Lagrangian (8.1), since Bj is actually a pseudo-scalar particle corresponding to the
fundamental field of sine-Gordon [61-63].

Exercises
1. Derive S(1)(0) using relation (8.47) and the identities
S(032)Sr(031) = Sr(032)ST(031), S(032)S7(031) — SrR(031)SR(031) = ST(632)S(031) ,

valid for 0192 = i(m — &), and verify the explicit expression given in (8.51). Finally,
using the fusion of two amplitudes S™(6), check expression (8.52).
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2. Derive (8.51) using (5.16): verify that S_(¢) in (8.43) is the only singular eigen-
value in the case of one breather, I'/ = (0, —1/v/2,1/+/2,0) and

kl —1kl

8.1.3 Form Factors

The soliton-soliton form factor of sine-Gordon satisfies the following Watson equations
Fss(e) - Fs (—H)S(G) = Fss<27Ti - 0) ) (8'53)

where S(6) is the sine-Gordon soliton-soliton amplitude (8.39). The minimal solution of
(8.53) can be found in a way analogous to the procedure, discussed in Section 8.1.1, that
was used to fix the soliton-soliton amplitude of sine-Gordon as a solution of the crossing
and unitarity constraints (8.26), (8.20). The result is [64]

, 0 o gt sinh T8¢ 1 _ cosht (1 — .ﬁ)
F™n 9y — _jginh — _ 27 s 8.54
") R P [/0 t sinh 2’% cosh £ 2sinht ’ (8:54)

where the factor —isinh & is due to the overall minus sign in (8.39). The solution (8.54) can
be derived in a simpler way by applying equation (7.19) to the soliton-soliton amplitude
(8.39) [21]. In general, with an amplitude given by

S(6) = exp { /0 Tt #(t) sinh w] , (8.55)

17T

the corresponding minimal solution for the form factor is

1 — cosht (1 - lfr)]

(8.56)

me(@) = exp [/0 dtf(t) 2sinht

Full expressions of soliton-soliton form factors are given then by the minimal solution
(8.54) multiplied by normalization constants and factors giving additional zeros/poles in
the physical strip: both of these objects depend crucially on the operator connecting the
soliton-soliton state to the vacuum, as mentioned in Section 7.

For example, the breather-breather form factors are given by

ES(012) = NOK& (612) Fim(012) (8.57)

whose minimal solution can be derived just from the corresponding amplitude (8.52) by
using (8.55), (8.56), as in the previous case. Indeed (8.52) can be written as (8.55), with

cosh (=)t

flt)y=2—" 1 . (8.58)

i
t cosh 3

If the operator is O(x) = ¢?(z), then K{f (0) turns out to be (7.17) with n = 1, = &,
while N* can be fixed by matching the large 6 asymptotic behavior of (8.57) with the
corresponding small-5 diagrammatic perturbative result [21].
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8.2 Chiral Gross-Neveu

The SU(N) chiral Gross-Neveu (¢cGN) model [65] is described by the Lagrangian (see [31]
and [8])

N 9 N2 N 2
Loy =1 i + gc% (Z %’%‘) - (Z %"Y%z’) ; (8.59)
i=1 i=1 i=1

and its particle spectrum consists of N — 1 multiplets with masses

3 nm

o N
My = Mm1——
SlnN

n=1,...,N—1. (8.60)

The form of the S-matrix for two fundamental particles is constrained by the SU(N)
symmetry to be [66-70]

sk(0) = 55 (0) (bw (9)0165 + en (0)0F6} ) (8.61)

with indices i, 7, k, [ running over 1,..., N. The overall scalar factor and the ratio between
transmission and reflection amplitudes are instead given by

LT o
s = LUt 2r N ) = - pn(0 8.62
O grar g -y MO G0

that are determined by unitarity, crossing symmetry and the YBE (3.11), which in partic-
ular fixes the proportionality factor between ¢y (6) and by (6).

8.2.1 Solutions for the SU(2) and SU(3) S-matrices

In particular, for N = 2 the particle-particle S-matrix turns out to be the limit £ — oo (or
% — 8m) of the sine-Gordon S-matrix (8.18)-(8.25)-(8.31): the commutation conditions
with the coproducts (6.2) built on the SU(2) generators (Pauli matrices) restrict the S-
matrix to be

S5V 9) = 5§ (6)

We consider also the SU(3) case (that will be useful for [6]), whose symmetry algebra is
generated by the eight Gell-Mann matrices. Imposing the commutation with four of them
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is enough to fix the following structure of the S-matrix:

az(0)
b3 (0)

c3(0)

bs3(0)

63<9)

c3(0)

b3 (0)

az(0)

b3 (0)

03(9)

03((9)

bs3(0)

b3 (0)

az(0)

(8.64)

with az(f) = b3(0) + c3(f). The matrix elements and the (minimal) scalar factors are
determined by the YBE, unitarity and crossing symmetry, using the charge conjugation

matrix

Cal..‘aN = €aj...an » CUaN = (_1)N—16a1...aN ) (865)
with €4,..q, and €% totally antisymmetric tensors. For the SU(2) case the resulting
elements read

0 —imr

w) =1, b= )=, (8.66)
while for SU(3) one finds
30 —2im
CL3(0) = 1, b3<6) = m, 03(6) = m . (867)

The scalar factors are given by (8.62) with N = 2 and N = 3 respectively.

8.2.2 Pole structure and bound-states

Since the SU(2) ¢cGN S-matrix can be thought of as the £ — oo limit of the sine-Gordon
one, and this limit corresponds to the highest repulsive regime for sine-Gordon, it can be
easily understood that there are no bound states in this theory. Otherwise, it can be also
verified that the S-matrix does not have any pole in the strip 0 < Im(6) < 7.

On the other hand, the SU(3) S-matrix has a pole in the physical strip at § = 217”,
corresponding to a bound state with mass ms = mq, then equal to the fundamental particle
mass. For generic N, bound states have masses given by the expression (8.60), so that
my—1 = mi. Indeed, it is possible to show that in the SU(N) ¢cGN the antiparticles are
N — 1 bound states of particles and vice versa [67].

We can now derive the particle-bound state S-matrix using (5.15) and finding I'}}, given
by the antisymmetric tensor €,;;, as the three eigenvectors corresponding to the singular
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eigenvalue b(f) — ¢(6). The result is

A(6) C(9) c(9)
B(9)
B(9)
B(9)
SN (O) =S | C) A(9) c®) |,
B(6)
B(9)
B(9)
c(9) C(9) A(6)
(8.68)

where A(0) = B(6)+ C(6), the scalar factor is given by the fusion of the fundamental ones

I(3-id)T(Z+id)
SP0) = 90— ir/3)SP (4 +in/3) = —2__2r 2n 8.69
o() 0( 177/)0(+17r/) F(%+i%)l“(%—129ﬂ)’ ( )

and the remaining matrix elements read

B(G) 1 Res (b(elg) - 0(612)) (2b(913)b(923) + b(913)0(023) + 6(913)6(923)

2 019=2ir/3
—c(b13)c(623)) (8.70)
0(9) = —% 0121::{263/3 (6(912) - 0(012)) (b(913)c(023) + 6(913)1)(923) — 0(913)6(923)) . (871)

Finally, the bound state-bound state amplitudes can be derived using (5.17): we leave this
as an exercise to the interested reader.

8.2.3 Form Factors

Here we show the simplest example of form factors in SU(N) ¢cGN models, that is the min-
imal solution to the 2-particle Watson equations (8.53), corresponding to the amplitudes
az3(0) = 1 of the S-matrices (8.63) and (8.64). Then the amplitudes are actually S(()N) as
written in (8.62) and, using the trick given by equations (8.55) and (8.56), one can easily

find
.  dten sinht (1 — 1) 0
Fﬂwn(e) = cexp / - - 1—cosht(1—— . (8'72)
0

t sinh?t im
A generic n-particle form factor for scalar operators would be

FP(61,...,0,) = K (01,...,60) [ Friir(6; (8.73)

1<i<j<n

where the function K g contains the pole structure and is partially fixed by the Watson
equations (7.10)-(7.11), with the amplitude S replaced by S = S/Sy [71]:

KS(01,...,0:,0;,...,0,) = KS (01,...,05,0;,...,00)S00;(0i5), j=i+1,

A1 yeeey@j,yQgy...yQn

KQ (01 +2mi,...,00) = K& (61, ., 0) [ | Sasar (65 — 61). (8.74)



The only solutions of these equations we found in literature for SU(/N) cGN were obtained
using the so-called “off-shell” nested Bethe ansatz method (see [24,22,71,72] for example),
that is beyond the scope of these lectures.

8.3 AdS/CFTs

In AdS5/CFTy, the dynamics of string excitations is described by an integrable non-linear

#ﬁ’;‘(% [74], while, on the gauge side, the fields

composing single-trace operators correspond to the excitations of an integrable super spin

o-model defined on the super coset

chain [75] (see also the aforementioned reviews [12] and [20]).

Then such excitations interact via a factorized S-matrix, depending on the ’t Hooft coupling
A, whose matrix elements were fixed in [16], up to an overall scalar factor, by imposing the
invariance of the S-matrix under two copies of the centrally extended su(2|2) superalgebra,
that is the symmetry algebra leaving invariant the vacuum.

In order to determine the scalar factor, crossing symmetry has been imposed in the algebraic
ways explained in Sections 4.2.1 and 6, in [19] and [17] respectively. The equation arising
from such condition was satisfied by the conjecture of [18] and was finally solved in [37]
(see also [14] for a review).

The bound states S-matrices have been determined in [76] by using the Yangian sym-
metry Y (su(2|2)) [31]. Recently, the usual bootstrap procedure was generalized to the
AdS5/CFTy case [T7].

Determining the exact, all-loop S-matrix in AdSs/CFT, has been of essential importance,
as in any other integrable theory, to study its exact finite volume spectrum. From the S-
matrix of [16], indeed, the asymptotic Bethe equations conjectured in [79] could be derived
[16,78]. Then, on the basis of the same S-matrix, it was possible to study and compute
the leading order finite-size corrections [80] and the exact spectrum via the TBA [81], that
was recently reduced to a simple set of non-linear Riemann-Hilbert equations in [82], the
so-called Quantum Spectral Curve (QSC) equations.

Concerning AdSy/CFT3, the exact S-matrix was determined on the basis of a symmetry
superalgebra still related to su(2|2), while the scalar factors were fixed by slightly different
crossing symmetry relations [83]. This S-matrix gives the Bethe equations conjectured
in [84] and was used to derive Liischer-like corrections [85] and the corresponding TBA [86]
(see also the review [87]). Finally, also in this example of integrable AdS/CFT correspond-
ence, it was possible to reduce the spectral problem to the solution of QSC equations [88].
In the case of AdS3/CFTs, two string backgrounds were studied, AdSs x S x §3 x S1
and AdSs x 83 x T*, and both of them involve massless string modes, a new feature
compared to AdSs and AdSs. A set of all-loop Bethe equations for the massive modes of
AdS3 x 83 x 83 x St were conjectured in [90] and later derived from the S-matrix proposed
in [89]. However, this S-matrix could describe only a sector of the theory. Imposing the
commutation with the generators of the full (centrally extended su(1]1)?) symmetry algebra
allowed [91] to determine the complete S-matrix for massive excitations and the consequent
all-loop Bethe equations [92] describing the large volume limit of the AdS3 x S% x §3 x S1
massive spectrum. Massless modes were included in the integrability framework in [93],
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while for the AdS3 x S3 x T* case the reader can look at the complete S-matrix determined
in [94]. These S-matrices are substantially more involved than the ones appearing in the
higher-dimensional holographic pairs, due to the presence of several distinct scalar factors
with novel properties. An all-loop proposal exists for the scalar factors, involving both
massive [95] and massless [96] modes, of the AdS3 x S x T S-matrix. Furthermore, finite-
size corrections due to massless modes seem to play a new role in the calculation of the
large volume spectrum [97]. See [98] for a review about these and other developments of
integrability in AdSs/CFTs.

Finally, in AdSs/CFT the determination of an exact S-matrix and related Bethe equations
is even more difficult due to the presence of more massless modes and less supersymmetry,
while crossing symmetry relations are still understood only formally and it is not clear
what is the CF'T} involved in this duality [99].
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1 Introduction

Integrable QFTs in 1+1 dimensions have a vast array of remarkable properties. In particular,
it is often possible to exactly compute the S-matrix of the theory (an extensive discussion
of this aspect is given in another part of the present collection [1]). The S-matrix captures
a lot of the theory’s dynamics but only describes the scattering of asymptotic states, i.e.
particles starting from infinitely far away and then flying off to infinity again. In contrast,
another interesting setup to consider is when our theory is put into a spatial box of finite
size L. In finite volume the spectrum of the Hamiltonian becomes discrete, so a natural
question to ask is what are the energies of the states.

It turns out that for integrable theories this energy spectrum can be computed to a large
extent using only the scattering data. For large volume L one can write down equations for
the spectrum in terms of the exact S-matrix. These equations are known as the asymptotic
Bethe ansatz equations and they will be the main topic of this article. Like the S-matrix
itself, they are exact at any value of the coupling constants. These equations are only valid
when L is large (in a sense that will be made more precise later), but still provide a lot
of important information. They are also the first step towards formulating the so-called
Thermodynamic Bethe ansatz (TBA) equations which give the energies exactly at any L
including all corrections. The TBA approach is covered in detail in a different part of this
collection [2].

Importantly, both the asymptotic Bethe ansatz and the TBA have been crucial for the
recent applications of integrability to several AdS/CFT dualities between gauge and string
theories [3]. A key problem in this setting is computing the energies of multiparticle string
states in finite volume, which are mapped to operator conformal dimensions in gauge theory
(in fact the volume L corresponds to the number of elementary fields in the operator).
Integrability methods have led to great success in exploring this problem, and in particular in
the computation of superstring energies on the AdSs x S® space which coincide with operator
dimensions in the dual N' = 4 supersymmetric Yang-Mills theory in four dimensions. We
hope that several simpler examples discussed in this article will serve as a starting ground
for understanding how Bethe Ansatz works in the AdS/CFT context.

The name 'Bethe ansatz equations’ originates from the famous solution of the XXX spin
chain by Hans Bethe in [4]. While our main goal is to study integrable QFTs we will see that
often computing the spectrum of some QFT model leads to an auxiliary spin chain which
should be solved first. We will see several examples and discuss the Bethe ansatz solutions
of these spin chains as well. At the same time, various spin chain models are interesting on
their own as many of them find important applications in condensed matter physics.

We will first discuss the asymptotic Bethe equations in a general setting and then cover
several examples for particular models. The presentation is structured as follows. In section
2 we give physical motivation for the asymptotic Bethe ansatz in integrable QFT and write
the Bethe equations in a generic form as a periodicity condition on the wavefunction. In
section 3 we present in a general form the algebraic Bethe ansatz approach allowing to
greatly simplify the periodicity constraint by reducing it to a transparent diagonalization
problem. In section 4 we demonstrate the method in action on the example of the SU(2)



chiral Gross-Neveu model. In the process we obtain the solution of the celebrated XXX
SU(2) Heisenberg spin chain. In section 5 we discuss some features of the XXX chain and
its Bethe eigenstates, as well as the classical limit leading to finite-gap equations. In section
6 we proceed to the more complicated case of the SU(3) chiral Gross-Neveu model which we
solve via nested algebraic Bethe ansatz. Finally in section 7 we illustrate the versatility of
Bethe ansatz by applying a Bethe-like method to solve the 1d quantum mechanical oscillator.
Some exercises for the interested reader are also included throughout the text.

There is certainly a large literature on the subject available, in particular we would
like to point out several reviews discussing various aspects of the Bethe ansatz methods
[5, 6, 7, 8, 9, 10]. For reasons of presentation clarity, only some selected references are
included in this pedagogical article.

2 Asymptotic Bethe ansatz equations in 2d integrable
QFTs

In this section we will discuss the Bethe equations for the spectrum of a generic 1+1 dimen-
sional integrable theory. We will always consider a theory on a circle? of length L, i.e. we
impose periodic boundary conditions.

As discussed in the part of this collection of articles dedicated to integrable S-matrices
[1], in an integrable theory the scattering has several remarkable features:

e The number of particles is conserved in any scattering event
e The momenta do not change but can only be redistributed between particles

e The S-matrix for multiparticle scattering factorizes, i.e. the S-matrix for any number
of particles is a product of the 2 — 2 S-matrices

Although in general one cannot introduce a wavefunction in QFT due to the production
of virtual particles, for integrable theories these special features (most importantly the first
one) make it possible to do this at least in some regions of the configuration space. Then from
the periodicity of the wavefunction one can derive quantization conditions which determine
the spectrum.

Let us first discuss a toy model — a theory with only one particle in its spectrum. An
example is the sinh-Gordon model for some values of the parameters. Then an intuitive
picture which gives the correct equations for the spectrum is the following one (for a more
rigorous discussion see e.g. [11]). Since the number of particles is conserved we can speak of
a wavefunction as in quantum mechanics. If we have n particles on a circle the wavefunction
must be periodic. Imagine that we take the first particle around the circle once, eventually
bringing it back to its place again.

'We also tried to make the notation in this article maximally consistent with other parts of the present
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Figure 1: Deriving the periodicity condition on a circle. We take the first particle with
momentum p; around the circle, scattering it through all the other particles.

If there were no other particles (or if the theory was non-interacting) the wavefunction
would acquire a phase factor e””” where p; is the particle’s momentum. Then from period-
icity of the wavefunction

et =1, (2.1)

i.e. the momentum would be quantized according to

plzﬂ, kelZ . (2.2)
L
However we need to take into account the interaction with other particles. If L is large
compared to the interaction range between particles (e.g. the inverse mass scale of the
theory), the particles are almost always well separated from each other. Because of this
their interaction is described by the asymptotic S-matrix which we know. The number of
particles does not change in this interaction. Thus when we take a particle around the
circle, it will scatter through all the other particles, and all that happens is that for each
scattering the wavefunction is multiplied by the S-matrix which is just some phase factor,
S(p1,p2) = e@Pvr2) - This product of S-matrix phases will combine with the e’ phase

acquired due to free propagation. Thus periodicity of the wavefunction will be ensured if

eiplLS(phm)S(pl,p?,) s S(plapn) =1 (2-3)

Similarly for any particle we get

eril H S(pj,pr) =1 (2.4)
k=1, k#j
This is a set of n algebraic equations for n variables p; ..., p, which thus allow us to fix the

values of the momenta. The system (2.4) are the asymptotic Bethe ansatz equations for our
toy model.

review volume.
2By a circle we actually mean a straight line segment [0, L] whose endpoints # = 0 and 2 = L are
identified.



Once the momenta are found from (2.4), one can compute the energy of the state. In
regions where the particles are well separated they propagate freely, so the energy of the state
should always be equal to simply the sum of individual particles’ energies. If the energy of
a single particle with momentum p is €(p) we will have

EZZWW (2.5)

From the derivation it is clear that the asymptotic Bethe equations will describe the
energy only in a large volume L. It turns out that, more precisely, the Bethe equations
capture all terms in the large L expansion of the energy which scale as ~ 1/L* (with integer
k), i.e. the powerlike corrections. However they miss the exponential corrections of the kind
~ e~™L (where m is the particle’s mass) which physically correspond to the effects of virtual
particles propagating around the circle.

In a more general theory one could have different types of particles, and different types
could transform into each other during scattering. In this case the S-matrix would have
some matrix structure with indices labeling the incoming and the outgoing particles. Then
in (2.4) the product in the r.h.s. would actually be a product of matrices, and should be
understood as acting on a wavefunction which also carries indices corresponding to particle
types.

Let us first present without derivation how Bethe equations will look like in this case. We
will need to introduce some important notation. Let us consider a model with K possible
particle flavours, or in other words K particle types. For each particle we should also allow
linear combinations of different flavours so its flavour state can be though of as an element
of CX. For n particles, their state which we denote by A is then the element of a tensor
product

Ae HH®H,®- - -®H, (2.6)

with each H; ~ C%. Choosing a usual basis e; in C¥ we can also write

K K
A= Z ZAjlmjnejl R e, . (2.7)

Ji=1 Jn=1
Each S-matrix is a linear operator acting on the tensor product of two of the spaces H;,
Si; € End(H; ® H;) (2.8)

where we put a hat on S to underline that it now has a matrix structure. This of course
matches the notation from the part of this collection focussed on S-matrices [1] where the
S-matrix has four indices — two for incoming particles and two for outgoing ones. A typical
example that we will discuss in the next section is

312(191;1?2) = f(p17p2)j + g(plapQ)Pm (2.9)

where [ is the identity operator and P is the permutation operator, i.e. 1512 (ea®ep) = ep®ey,
while f and g are some explicit functions. As another illustration, we can write the unitarity
condition as

g12(p1,p2)§12(p2,p1) =1 (2-10)

5



and the highly important Yang-Baxter equation as

S'12(]91> p2)5'13(p1, P3)323 (p2> p3) = 523(2?2, pB)glfs(pbpfi)SlZ(pl ) p2) (2-11)

and it is satisfied over the space Hy ® Hy ® Hs.

Now we are ready to write the Bethe equations for a theory with several particle types.
They are similar to (2.4) but the product of S-matrices now acts on a state A € H; ® Hy ®
e® Hn ,

GipkLSk7k+1gk7k+2 PN Sk,ngk,l c. S’k,k—l A= A, k= 1, o, n (212)

The energy is again the sum of individual energies.

Our main goal is to understand how to solve this equation. Notice that the ordering in
the product is also important since S is a matrix®. So, the r.h.s. of (2.12) is an operator
acting in the full space Hy ® Hy ® --- ® H,. To solve the Bethe equations (2.12) we need
to find its eigenvalues and eigenvectors. Fortunately, this is possible to do in a very efficient
way using the fact that the S-matrix satisfies the Yang-Baxter equation. In the next several
sections we will demonstrate how this works in concrete examples.

To finish the discussion, let us outline the derivation of the Bethe equations (2.12). First
we will need to write the wavefunction in a more explicit form. This was already discussed
to some extent in the article on S-matrices [1] (for more details on this see [11] and the
review [10]). To automatically take care of the (anti-)symmetrization for identical particles,
let us introduce creation and annihilation operators a;, a}, whose index j labels the different
particle types. Then we can describe the wavefunction as

Wiy in (T2, -+ ) = (0lag, (1) - aq, (20)[W(p1, - -, Pn)) (2.13)

where we use the product of annihilation operators to extract the part of the wavefunction
corresponding to particle flavours iy, ..., 4,. The state |¥(p1,...,p,)) is defined as

U({p})) = /d”y > AR L dph) (H 62"’7’“’“) Oy < - < yn) X (2.14)

PeSn

m=1

al,(y) .. a], (yn)|0)

where 0() is the Heaviside step function? and we assume summation over repeated indices.
The coefficients A are related to each other as

AP = Sp.p,., - A” (2.15)

3These equations again match well the picture of taking one particle around the circle. E.g. after we
scatter the 1st particle through the 2nd one they both change flavours, then the 2nd is untouched and we
scatter the 1st (with the flavour now different) through the third, etc. So once we take the first particle
around the circle it can change the flavour and also all other particles can change the flavour. The result
has to match the initial wavefunction which is exactly the statement in (2.12).

Te. O(y; < -+ < yyn) is equal to 1 when y; < -+ < y,, and is equal to zero otherwise. Let us mention
that this expression for the wavefunction is valid only in the regions when the particles are well separated,
so it makes sense to consider the condition y; < -+ < yp.



if P’ is obtained from P by permutation of elements i, i+1 corresponding to particles P;, P; 1.
The flavour indices of the S-matrix in (2.15) are understood to be appropriately contracted
with those of A”. As any permutation can be written as a sequence of permutations that
affect only two elements, any A” can be related to AT (with Z being the identity permutation)
via a sequence of multiplication by the S-matrices. The Yang-Baxter equation satisfied by
the S-matrix ensures this relation is unambiguous.

As an example, for a state with two particles in a theory with only one particle type, we
would get
Uy ay = TIPSy, py)et2rrTiPLE (2.16)

Uysp = eiP2r1tiprizs S(ppr)eipll‘lJripzxz (2'17)

Exercise: Derive these equations from (2.14).

Let us now recall that we are considering the theory on a circle where the absolute ordering
of particles is meaningless, so the ordering is only important up to cyclic permutations. Let
us consider for example the wavefunction for 1 < -+ < x,,. If we define y; = x1 + L then
since the separation between particles cannot be larger than L we have 2z, < --- < z,, < 1.
For this ordering we would get from (2.14) a different expression for the wavefunction, but
it should coincide with the first one as on a circle x; is indistinguishable from x; + L. This

leads to ' o R
GilplLAI = 51,251,3 Ce SLHAI (218)

and in general (notice that the ordering in the product is important since S is a matrix)
G_ipkLAZ = Sk,k+1§k,k+2 c.. S’k,nsﬁk’l A S’]%k_lAI (219)

These are precisely the equations (2.12) that were announced above, where A is identified
with AZ.
In conclusion, the crucial problem is to diagonalize the product of S-matrices in (2.12). In

the next section we will describe a general procedure for doing this based on the Yang-Baxter
equation, and then we will see how it works for concrete examples.

3 Algebraic Bethe ansatz: building the transfer matrix

The method we are going to use for solving the periodicity condition (2.12) goes under the
name of the algebraic Bethe ansatz. In this section we will discuss its part which is common
for all models — the construction of the so-called transfer matrix — and later we will specialize
to concrete examples.

The key insight which allows to diagonalize the product of S-matrices in (2.12) is to
introduce an unphysical particle with momentum p in an auxiliary space H, ~ CX and
scatter it through all our particles. That is, we define the monodromy matrix

~

Tu(p) = S (D, 91)Sa2(D, D2) - - - San (D, Pn) (3.1)



which acts in H, ® H where H = H; ® --- ® H,, is our physical Hilbert space. From the
Yang-Baxter equation for the S-matrix it follows that the monodromy matrix satisfies a
similar condition:

Sar(p, ) Tu(p) Ty (0') = Ty(0) 7o (p) Sat (0, 1) (3.2)
Then we define the transfer matrix by taking a trace over the auxiliary space
T(p) = TraTa(p), (33)

and it is now an operator on the physical space only,

A

T(p) € End(Hy®---® H,) . (3.4)
Remarkably, the transfer matrices for different values of p commute,
[T(p), T(P)] =0 . (3.5)

This follows from the “RTT relation” (3.2)° and is the main point of the construction®. This
commutativity means that they have a common set of eigenvectors.

Moreover, T (p) is also related to the product of S-matrices that we want to diagonalize.
To show this we need an extra property

gl2(p7p) = —P12 (3.6)
which holds in many theories including all examples we consider below. Then
T(pl) = _Trapalgzﬁ(plapQ) s gan(pl,pn) (37)

= —Tragu(phm) - gln(]?lapn)Pal
= —512(1917]92) cee gln(plapn)

and the result is exactly the operator in the r.h.s. of the periodicity condition. We have used

palgai = Slipala Trapab = fb (38)
P2 =1 (3.9)

Py = Py (3.10)

palpaQ = Pa2pl2 = plQPal (311)

Using cyclicity of the trace we can also show that for any £ the transfer matrix T(pk) gives
the operator that we want to diagonalize,

T(pk) = _Sk,k+1gk,k+2 R Sk,ngk,l c. S}C’kfl (312)

5the name 'RTT relation’ is due to the fact that in the literature usually one has the R-matrix in place
of the S-matrix

6Here is one way to explain the construction informally. We want to build a commuting set of operators
on the Hilbert space H, and for this we uplift it to H ® H, ® Hp, then on that space we have Ta and Tb
which ’almost commute’ — up to multiplication by S-matrices as in (3.2). Then the operators obtained from
Ta, T, by tracing over the auxiliary space will really commute with each other on the physical Hilbert space.



Figure 2: Graphical representation of the S-matrix. The S-matrix 5’12 acting in H; ® Hs is
shown as an intersection of two lines. Each of the two lines corresponds to one of the two spaces
H, Hy. The four ends of the lines correspond to the four indices of the S-matrix.

Ji Jn

) ./

J1 Jn

Figure 3: Graphical representation of the monodromy matrix T,. The monodromy matrix
is a product of several S-matrices. The horizontal line corresponds to the auxiliary space H,, while
vertical lines are associated with the physical spaces Hi, ..., Hj.

So our goal is to solve the eigenvalue problem for T(p),
T(p)A=A(p)A (3.13)
and then the periodicity condition (2.12) reduces to just an algebraic equation,
el = —A(py) ! (3.14)

In the next sections we will attack the problem of diagonalizing the transfer matrix 7'(p) for
several models.

Let us mention that a pictorial representation is often used for the transfer matrix and
the S-matrix, as already discussed in part in other chapters of this collection [12, 1]. To
understand how it works, let us write the S-matrix S1o in index notation. As it acts on
the tensor product of two spaces H; ® Hs, its index structure is SZ,”,Q2 where the first upper
index and the first lower index correspond to the H; space and the second pair of indices
corresponds to the Hs space. As shown on Fig. 2, we can represent this structure a pair of
intersecting lines, with the ends of one line corresponding to the H; space and the ends of



13

12

23

Figure 4: Graphical representation of the Yang-Baxter equation (2.11). The equation
means that we can move the vertical line across the intersection point of the two other lines.

ab ab

Figure 5: The RTT relation (3.2). The two horizontal lines correspond to auxiliary spaces
H,, Hy, while the vertical lines correspond to physical spaces Hy, ..., H, (labels on the picture next
to the lines show which spaces the lines are associated with). Due to the Yang-Baxter equation we
can move all the vertical lines one by one to the other side of the intersection, leading to the RTT
relation (3.2).
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the other line to the Hy space. The convenience of this notation is that contraction of indices
in any expression with a product of operators such as (3.1) is simply represented as joining
the corresponding lines. For example the monodromy matrix can be depicted as shown on
Fig. 3. The Yang-Baxter equation in graphical form is shown on Fig. 4. Notice that using
the pictorial representation one can easily prove the RTT relation using the Yang-Baxter
equation, as shown on Fig. 5.

4 Algebraic Bethe ansatz: solving the SU(2) chiral
Gross-Neveu model

We will now specialize to a concrete example: the chiral SU(2) Gross-Neveu model (in section
6 we will study the more complicated SU(3) case). This theory has already been discussed
and introduced in the part of this collection about S-matrices [1]. We will parameterize the
particles’ energy and momentum” in terms of the rapidity u,

E:mcosh%, p:msinh% (4.1)

In the SU(2) chiral Gross-Neveu model there are effectively two massive particles, so in
terms of the previous notation K = 2 and the S-matrix acts in C?> @ C?. Explicitly, the
S-matrix reads

S1a(p1, p2) = ST (uy — u2) Ry (w1 — uy) (4.2)
I(1—4r@Ed+u
§77(w) =~ ) (43
L1+ 3H)TG—5)
where )
Rin(w) = —— <u] + 2@'P12) . (4.4)
This is the usual R-matrix of the rational type, satisfying the Yang-Baxter equation
Ria(u — v) Riq(u) Raa(v) = Rao(v) Ria(u) Ria(u — v) (4.5)
as well as R R
Rm(U)Rm(—U) =1. (46)

As we discussed we need to diagonalize the transfer matrix built as a product of these S-
matrices with a trace over the auxiliary space. For that the important thing is the matrix
structure, so let us drop for some time the prefactor S//(u), and then

Ny

Ny
T(u) = Tre [ [ By (u = w;) = Trg [ [ Raiui — u) (4.7)
=1

=1

where Ny is the number of particles on the circle.

"here we choose an unconventional prefactor in front of u for a better match with the usual spin chain
notation
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For some time now we will concentrate on the problem of diagonalizing this transfer
matrix. Later we will return to the Gross-Neveu model and assembling all the ingredients
we will write equations for its spectrum.

As we saw, the operators 7'(u) commute for different values of u. As the transfer matrix
in our case is a polynomial, its operator coefficients in front of the powers of u all commute
with each other. In particular, if we set all u; to zero, a particular combination of these
operators gives the famous XXX spin chain Hamiltonian — a system of N interacting spins
s =1/2. It is defined as

1
H = _Z Zzl (Jigi+1 - ].) (48)
where o; are the Pauli matrices acting on the ¢-th site and we identify ¢ = Ny 41 and ¢ = 1.
The same operator is expressed via the transfer matrix as

. d .
H=1i—1logT 4.9
i los )| (49)
The Hamiltonian can be also written in terms of permutation operators,
e
=3 @—EMQ. (4.10)
k=1

The importance of this Hamiltonian was first recognized in condensed matter applications
where it serves as a model for a ferromagnetic material. In the AdS/CFT context the XXX
Hamiltonian is also directly relevant as it describes the leading order anomalous dimensions
for operators in a simple subsector of the N' = 4 supersymmetric Yang-Mills theory (see the
review [13]).

If we keep w; nonzero, the relation (4.9) gives the Hamiltonian for the spin chain for
which u; are called the inhomogenieties. The fact that all coefficients of 7'(u) commute with
the Hamiltonian, i.e. represent a large number of conservation laws, is a strong sign for the
integrability of this model and ultimatley leads to its solution.

To construct the eigenstates of T(u) we will use operators originating from the mon-
odromy matrix T,(u). We can write the monodromy matrix explicitly as a 2 x 2 matrix in
auxiliary space,

~

- () 5)

where the entries act on the physical space,

~

A(u), B(u),C(u), D(u) € End(H, ® --- ® H,,). (4.12)

In this notation we have

T(u) = A(u) + D(u) . (4.13)

12



The entries of T'(u) satisfy important commutation relations following from the identity (3.2)
which takes the form®

Ris(v — w)T1 ()T (v) = To(v) T (u) Ry (v — u) . (4.14)
In particular, ) )
[B(u), B(v)] =0 (4.15)
P V—w+ 20 A A 2 4 A
A(v)B(w) = ﬁB(w)A(v) o wB(v)A(w) (4.16)
D(v)B(w) = %ﬁmé(w)ﬁ@ .- iiwé(v)ﬁ(w) (4.17)

Exercise: Derive these relations.

Let us introduce the vacuum state |0), in which all spins are up®:

|0>=HT---T>=((1)>®~--((1)) (4.18)

Using the explicit form of the R-matrix we find that the vacuum is an eigenstate of T and

A(u)[0) = [0), D(uw)o) =[]

uj—u ~
_ =0. 4.1
0 Gl =0 (419)

The idea is to view B as a creation operator and build the transfer matrix eigenstates as

A~ A A

fwn, - ww,) = Blwn) Blws) ... Bluwx,)|0) (4.20)
where wy, ws, ... are parameters known as Bethe roots. Let’s see how T = A+ D acts on
this state. If the second term in the r.h.s. of (4.16) was absent, we could just commute A(u)
through all B’s until it hits the vacuum which is its eigenstate. Similarly if there was no
second term in the r.h.s. of (4.17) we could commute D(u) through all B’s and then again

arrive at the vacuum. However due to the presence of these extra terms in (4.16), (4.17) we
will find extra unwanted contributions, and the full result is

~

Ao, owy) = T %B(wl) .. B(wn,)|0) (4.21)

+ ZMjB(U)B(’lUl)...B(wj‘—l)B(wj+l)“‘B<wNa)|0>

- wi; —u~+ 21 U — U~ R
D(u)|wy,...,wy,) = H ij — HUk_u+2iB(w1)...B(wNa)\O) (4.22)
k

+ D MB)Bwn) - Blwg)Blw) - Bluw,)|0)

8the R-matrix has argument v — u as T, is built from R~
9Sometimes this state is called ‘pseudovacuum’ rather than vacuum, since e.g. the ground state in this
model is actually degenerate, for instance the state with all spins down has the same energy.
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The unwanted terms in these two equations are those that include M;, Mj. Explicitly, by
M; we denote the coefficient of the term where A was commuted with B using the second
term in the commutation relation (4.16), i.e. the one which exchanges the arguments (and
similarly for M]-). For instance, it is easy to compute

—21 — 21
My = — [T (4.23)
U—w1k¢1 w1 — Wg
~ 21 Uy, — W wy — wy + 2
M, = 4.24
! U—w11;[Um—w1+2i]£Il Wy — Wy ( )

And since all B’s commute, M;, M; are trivial generalizations of these expressions,

M]:u_w'H a—— (4.25)
]k;ﬁ] J
- 2 oy — W — Wi+ 2%
iy = L T (4.26)

u—wjmum—11)j—i—2z'k7é Wy, — W;
We see that for any 7 we can cancel the unwanted terms against each other! This will happen

if

Hw]—wk—l—Qz_H m — Wj Hwk—wj—l—% (4.27)
wii Wi T Wk —w]—i—sz# Wy, — W
It’s convenient to relabel the Bethe roots as w, = wy, + ¢, then dropping the tilde we get
ij um+z_Hw]—wk+2i (4.98)
FL W) — Uy — wj—wk—ZZ '

The equations (4.28) are known as Bethe equations for the XXX chain, and they are one of
the key results of this section. The eigenvalue of the transfer matrix then reads

U — Wy + 1 U — U U — Wi — 3
A _ U — Wy +1 4.29
su(z)(u) Hu—wm—i+gu—uk—2iln:[ U — Wy — 1 ( )

m

This is the main outcome of our discussion. In particular, we can extract from it the
eigenvalue of the XXX Hamiltonian (4.8). To do this we use the relation (4.9) which links
the Hamiltonian to the transfer matrix in which all u; should be set to zero. We find the

simple result!®
1
E=2 ) 4.30
; w? 41 (4:30)

Also, it is important that the XXX spin chain Hamiltonian has an SU(2) symmetry, which
will be discussed in more detail in section 5.1, together with its implications for the structure
of the eigenstates and eigenvalues.

10Tn the spin chain literature the Bethe roots wy and the inhomogenieties u,, are usually rescaled by a factor
Wi —Um+i/2 wj—wg+i
m ow;—um—i/2 Hk;ﬁj W —Wi—1

of two compared to our notation so that the Bethe equations would read []
and the energy of the XXX Hamiltonian would be E = 13" j #1/4
J

14



Let us finally underline that the Bethe equations we have just obtained give the spectrum
of the transfer matrix and of the spin chain Hamiltonian ezactly at any length of the chain,
i.e. any N;. This is in contrast with the Bethe ansatz for the 2d field theory we started
with, which captures only powerlike and not exponential corrections in the volume L.

One can ask whether these equations provide all eigenstates and eigenvalues of the trans-
fer matrix, i.e. whether the algebraic Bethe ansatz solution is complete. While the answer
is certainly expected to be positive, a fully rigorous proof has not been found so far (the
proofs which are available rely on some conjectures, see [5] for an initial discussion and also
[14] as well as references therein for a more recent summary). A related issue is that the
Bethe ansatz could have some singular solutions which do not correspond to eigenstates.
This issue as well as the question of completeness become more tractable if one introduces
twisted boundary conditions for the spinj chain (see e.g. the recent discussion in [15] and
references therein). It is also expected that it is sufficient to consider only solutions where
the Bethe roots are pairwise distinct in order to get all eigenvalues of the Hamiltonian.

Let us mention that there is a shortcut to the Bethe equations for our transfer matrix.
Suppose we forget about the unwanted terms in the commutation relations, then we would
still arrive at the same expression for the eigenvalue (4.29). This eigenvalue however appears
to have poles when u = w;. The poles cannot be really there as the transfer matrix is
not singular at these points'!. Demanding that the residue of the poles vanish we obtain
equations on the roots wy — which are nothing but the Bethe ansatz equations (4.28) ! This
is not a rigorous derivation of the Bethe equations, but this trick is very useful. We will
apply it in section 6 for the SU(3) case.

Notice that if we had only the XXX Hamiltonian it would be very hard to guess the
transfer matrix and the algebraic Bethe ansatz procedure! Historically the XXX chain was
solved first by another method which we will discuss in the next section.

4.1 Coordinate Bethe ansatz for the XXX Hamiltonian

The exact solution of the XXX chain was originally obtained by a more intuitive method
known as the coordinate Bethe ansatz [4] (see e.g. [5] for a review and more details on
this model). Let us forget about the transfer matrix and consider just the XXX chain
Hamiltonian,?

H=:% (1 _ ﬁk,k+1> (4.31)

1

N | =

L
k=

where as usual we identify the (L + 1)-th and the 1st sites (we consider the case when there
are no inhomogenieties, u; = 0). The method involves making a clever guess (ansatz) for the
explicit form of the eigenstates. We start with the ground state in which all spins are up,

HAt..1)=0. (4.32)

it’s only singular at u = u; + 2¢ which corresponds to the pole in our R-matrix
12Tn this subsection as well as in section 5 below we denote the length of the chain as L (to simplify
notation) rather than as Ny which was used in the discussion above.
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Let us look for the first excited state as a combination of terms

) = 1. ) (4.33)

where one spin at the nth site is flipped. Writing
W) =) " e?|n) (4.34)

and noting also the periodic boundary conditions n ~ n+ L we find that it’s an eigenstate if

el =1, (4.35)
The corresponding energy is
2
E = 4.36
()= —— . (1.36)
where we parameterize the momentum as
gr— WL (4.37)
w—1

So it is natural to understand [¢) as a l-particle state, and the momentum of the particle
is quantized according to (4.35). Also, notice that the energy (4.36) matches the general
formula (4.30) for the case with only one root w;.

Let us further write a two-particle state as
W)= > ¢.m)nm), (4.38)
1<n<m<L

where |n,m) is the state with nth and mth spins flipped. We make an ansatz for the
wavefunction v as . . . .
w(n, m) — €Zp1n+2p2m + S(p17p2)€zp1m+zp2n ; (439)

where the coefficient S is to be understood as a phase acquired by the wavefunction when
the two particles scatter through each other. We find that this will be an eigenstate for

wl—wg—i—Zi

S(p1,p2) = (4.40)

wl—w2—2i’

with the eigenvalue E(u;) 4+ F(uz). What is truly remarkable is that this construction still
works for more than two particles. E.g. for three excitations, denoting

1, P2, p3) = Z PPNt Iy g, ng) (4.41)
1<ni<ng<ns<L

we can write the wavefunction as

|¥) = |p1,D2,3) + Si2|p2, p1,p3) + Sas|p1, p3, p2) + S13512|p2, D3, D1) (4.42)
+  S13523|p3, p1, p2) + S12513523|P3, P2, 1)
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(with S;; = S(pi, p;)) and it is still an eigenstate provided the Bethe equations

N L .
(wiﬂ) o ) R (4.43)
o

wj — 1 w; — Wy, — 2

are satisfied'3. Notice that the wavefunction is built using only the same two-particle scatter-
ing S-matrix, so in this sense multiparticle scattering is reduced to only 2 — 2 interactions.
This is in full analogy with the factorization of scattering in 2d integrable QFTs. This spin
chain wavefunction is in fact one of the inspirations for writing the QFT wavefunction in the
form that we did before.

4.2 Bethe equations for the SU(2) chiral Gross-Neveu model

Let us get back to the SU(2) Gross-Neveu model. Now we are ready to write the full set of
Bethe equations for its spectrum. To do this we should plug the explicit expression (4.29)
for the transfer matrix eigenvalue A into the periodicity condition (3.14). Adding the scalar
factor S//(u) that we dropped before, we get

e TT 544 (u; — U Wkt
p Hs umHuj—wk—i_ 1. (4.44)
k

These equations should be supplemented by the Bethe equations (4.28) which fix the pa-
rameters wj,

ij um+z_Hw]—wk+22 (4.45)

Wi — Up, wj—wk—QZ
m

Then the energy is given by
U,
E = chosh kA (4.46)

We expect this to be the ezract result for the energy, up to corrections that are exponentially

small in L. This concludes our solution for the spectrum of the Gross-Neveu model at large
L.

In the next section we will discuss the XXX chain in some more detail, and then in section
6 derive a generalization of these equations to the SU(3) Gross-Neveu model.

5 Exploring the XXX spin chain

The SU(2) XXX spin chain which we already encountered in the previous section is a very
important and widely used model, and deserves a deeper look. In this section we will discuss
several of its features in more detail. We will consider the case without any inhomogeneities
for clarity.

13These equations are of course obtained from (4.28) by setting all u; to zero.

17



5.1 The Bethe states in-depth
In the previous section we saw that the XXX spin chain Hamiltonian

L1 .
=33 (1 - Pk,kH) (5.1)

k=1
can be diagonalized via algebraic Bethe ansatz and its eigenstates are built as'*
| W) :B(wl)B(wg)...B(wMﬂ Mo, (5.2)
where the Bethe roots are determined by

NL M .
(ug%—l») :ij—wk+22. | (5.3)
wj — 1 k#wj—wk—Qz

Importantly, this Hamiltonian commutes with the operators Sz, S*y, S, giving the total spin
of the system, which are defined as a sum of the individual spins, i.e.

[f{7 gx] = [I:L Sy] = [H, gz] =0, (54)

L
So = Zgéi), a=x9z . (5.5)

These operators S, S*y, S, are the generators of the global SU(2) symmetry algebra under
which the Hamiltonian is thus invariant. First, this means that we can choose eigenstates
of H to be eigenstates for S, as well. Also, if we have an eigenstate we can generate more
eigenstates (with the same energy) by acting on it repeatedly with the spin-lowering or
raising operators S’i = S’m + z’S’y.

Since there is an SU(2) algebra acting at each site of the chain, the whole 2X-dimensional
Hilbert space is a tensor product of L copies of the fundamental representation of SU(2). It
can be thus decomposed into a direct sum of irreducible representations (irreps) V,, of the
global SU(2) symmetry,

(C2®"'®C2:@OLVO¢‘ (56)

Due to the relations (5.4) above, each V,, is an invariant subspace for the Hamiltonian and
all states there have the same energy. For instance, when L = 2 we have a system of two
spin-1/2 particles, so the Hilbert space decomposes into a spin-0 and a spin-1 representation.
The full space is spanned by the three states

1
E

14To simplify compared to the discussion of the Gross-Neveu model above, in this section we donte the
length of the chain as L and the number of excitations as M.

[, [, —= (Th +141) (5.7)
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which form the spin-1 irrep of the global SU(2), together with the state
1
V2

in the singlet (spin-0) representation. The three states (5.7) all have zero energy like the
ground state (which is one of them), while the singlet state has the energy F = 2.

(I =131 (5.8)

In each of the representations V,, there is a highest weight state from which all other
states are obtained by acting with the lowering operator S_. These other states are known
as descendants. In our example above with L = 2, the states | 11) and \/iﬁ (| ) — | 41)) are
highest weight. In fact, the highest weight states are always precisely the Bethe states of the
algebraic Bethe ansatz (5.2).1

Exercise. What are the solutions of Bethe equations corresponding to the highest weight
states for L =27

There is also a very handy descripton for the descendants, as the lowering operator is
expressed through the operator B(w) in the limit w — oo,

~

B(w) = const x w*1S_+ ..., w— oo . (5.9)

It’s easy to see that one can add roots w;, = oo to any solution of the Bethe ansatz and the
Bethe equations will still be satisfied. Thus for finite roots the Bethe state (5.2) is a highest
weight state, and if some roots are at infinity it is a descendant. Also, due to

A

(5., B(u)] = —B(u) (5.10)

the Bethe state (5.2) is always an eigenstate of S, with eigenvalue L/2 — M, and we can
think of this state as having M spins flipped from | 1) to | |).

As we said above the Bethe ansatz is expected to give the complete spectrum for this
model. Also, all highest weight eigenstates can be constructed as Bethe states (5.2). In fact
to get all highest weight states it’s enough to consider only M < L/2 in the Bethe equations
(this is clear from the fact that the eigenvalue of S, for a Bethe state is L/2 — M).

Let us also mention that the algebraic and coordinate Bethe ansatz solutions both rely on
the existence of a simple reference eigenstate (|0) in our case), on top of which the other states
are constructed. In some integrable models like the anisotropic XYZ chain such a simple
reference state is not known in the generic situation, and one has to use other methods to
solve them (see [16] for some recent discussion).

Another curious fact is that the Bethe equations have a potential. More precisely there
exists a function F'({w;}) such that the Bethe equations are obtained from its derivative.
To see this let us take the logarithm of the Bethe equations, finding

. J .
, _ 9
w; — 1 w; — Wy — 21
J k=Lk#j 7

15And conversely, the states built as (5.2) with finite wy, are highest weight states.
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where the integers n; € Z are known as mode numbers'®. Then we can write these equations
for all values of k as a derivative of a single function,!”

OF

where

Z wj + 1) log(w; + 1) — (w; — 1) log(w; — 1)] (5.13)

+ Z [(wy, — w; — 2i) log(wg, — w; — 2i) — (wy, — w; + 2i) log(wy — w; + 24)] .
k<j

The function F' is known as the Yang-Yang function (its analog first appeared in [17]) and
can be generalized to almost any other quantum integrable model. In particular it plays
an important role in the relation between N = 2 supersymmetric gauge theories in four
dimensions and integrable systems [18]. Some of its properties are further discussed in the
lecture course of this collection devoted to Thermodynamic Bethe Ansatz [2].

Let us finally mention for completeness the celebrated Gaudin formula for the norm of
the Bethe states [20, 19]. It can be derived almost solely from the commutation relations
between elements of the transfer matrix. The result is written as'®

Y 4 Ny 2
(W) = (2i) HwJ+QZH(1+(wj—wk)2 %ﬁawmawn (5.14)

#k

where the key part is the determinant involving the Yang-Yang function. There is also
a generalization of this formula, again in determinant form, for a scalar product of two
Bethe states in one of which the uy are “off-shell”, i.e. do not necessarilly satisfy the Bethe
equations. Finding a compact extension of that formula to a higher rank (e.g. SU(3)) chain
is a famous and longstanding open problem.

5.2 Spectral curve and finite-gap equations

Let us now discuss some interesting features which emerge in the classical limit of the XXX
chain — namely the limit when the number of excitations and the length are very large while
their ratio is finite. We will see that in this limit the Bethe equations reduce to a set of
discontinuity conditions known as the finite-gap equations which are ubiquitous in classical
(rather than quantum) integrable systems. These equations also define a Riemann surface
known as the classical spectral curve, which encodes the conserved charges of the system.

16Sometimes not n but —n is called the mode number in the literature

170ne could alternatively include in F an extra term —27i > « Wk With some specific ny;, then the Bethe
equations would read just OF /0wy = 0 but F' would explicitly depend on the specific choice of the mode
numbers ny which are in general different for different states.

18This formula is valid if the set of Bethe roots is invariant under complex conjugation, i.e. {w;} = {w;}*
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For a particular simple example we will show how to solve these equations and compute the
energy using only various analyticity constraints. For a more detailed discussion we refer the
reader to e.g. [21]'. Our discussion here complements the description of classical integrable
systems in another part of the present collection [22].

It is convenient to use the Bethe equations in logarithmic form (5.11), i.e.

wj+z

M
o 2
=y LT o, (5.15)
U)j —1

Llog 5
Ny w; — Wy — 21

In our limit L and M are very large. The roots will scale as w; ~ L, and let us use the
rescaled roots defined as

U}j = LJ]j, ZL’j ~ ]_ (516)
then we have
S P (5.17)
r, L4—~zx;,—x Ty
J k#j J

The number of roots is very large and they will get close to each other, so instead of a
discrete set one can describe them as a continous distribution. The roots will form several
cuts in the complex plane. Let us introduce the density of the roots

o) = 7 30— 2,) (5.18)

and the resolvent

G(x):%z ! :/Cdgp(g) (5.19)

)
T —x; —
- g x—E£

where C' is the union of cuts C; on which the roots condense, C' = UC;. Introducing the
filling fraction
a=M/L (5.20)

we have the normalization condition

/C p(€)de =, (5.21)

so that o
Gx)=—+..., z—00. (5.22)
x
In our new variables the Bethe ansatz equations (5.17) can be written as
d 1
G(x+i0)+G(m—iO):2][%(?:E—ﬂnj, z € (| (5.23)

where the dashed integral sign means that we should take the integral’s principal value (there
is a singularity at x = £). These relations are known as finite-gap equations®. The resolvent

Ydue to our notation there are various factor of 2 differences with [21]
20the word “finite’ refers to the fact that we consider the case where the number of cuts C; is finite
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has branch cuts formed by the Bethe roots and is thus a multivalued function whose Riemann
surface is known as the classical spectral curve of the model. We derived it from a limiting
case of the Bethe ansatz for the quantum XXX chain, but similar curves arise in various
other situations, e.g. in classical integrable systems and in matrix models.

Let us also further restrict the solution by imposing an extra condition

1= g (5.24)

U)j—l

J

where each term in the product is nothing but e”?s with p; being the momentum of a single
excitation. This condition (known as the “zero-momentum” requirement) in fact means that
the Bethe state is invariant under cyclic shifts of the sites. In our limit we can write it as

1 1

or

/dgé = m . (5.26)

Since at small z we have

[ [
Glr) = /C . /C £ o). (5.27)

we can equivalently write

G(0) = —mm . (5.28)

Let us now consider in detail an example when there is only one cut, whose mode number
we denote as n. We will fix the resolvent purely from analyticity constraints. From the
definition of the resolvent we see that it is an analytic function with 1/x asymptotics at
xr — oo and the only singularity being the branch cut formed by the Bethe roots. The
discontinuity on the cut is

G(x +10) — G(z — i0) = —2mip(x), x€C (5.29)

Furthermore from (5.23) we see that the values of the resolvent above and below the cut
sum up to a meromorphic function, thus the cut is of the square root type. Combining all
this we can write

G(z) = f(x) + g(x)vQ(z) (5.30)

where f, g are meromorphic functions and () is a polynomial. Since there are only two branch
points, ) has degree 2. From (5.23) we get

fla) = % (1 _ m) | (5.31)

T

With this f(x) the resolvent G(x) has an apparent singularity at x = 0 which can only
be compensated by g(x). Recalling the asymptotics of G(z) at large x, the only choice is
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g(x) = c¢/x with some constant c. Let us fix the normalization of Q)(x) by choosing its free
coefficient to be 1, i.e. Q(x) = az® + bx + 1. Then the remaining constants a, b, ¢ are fixed
from finiteness of G(x) at = 0 together with (5.22), (5.28). This gives

G(z) = % (é — 7TTL) + %\/(ﬂnx)z + (4mm — 2mn)z + 1 (5.32)

and
a=m/n, (5.33)

so we must have m < n.

Imx

0.10+-

0.05-

Rex

-0.05+

-0.10

Figure 6: The branch cut of the resolvent (5.32) connecting the two branch points (plot generated
from numerical solution of Bethe equations). Notice the bending of the cut.

It’s important to understand a subtlety with the choice of branches of the square root
in (5.30). Naively one might think that at 2 = 0 the square root in (5.32) will be equal to
V1 = 41, but then the pole at z = 0 wouldn’t cancel. To clarify this let us consider as an
example n = 3, m = 1. Then the branch points are at

1+ 2iv/2 1—2iv2
=V o T2= (G

.34
97 97 (5?))

T
and the cut should connect them. First, strictly speaking the cut is not a straight line in
this case. If we take a small part of the cut approximated by the segment Az € C, then
Lp(z)Ax is the number of Bethe roots inside this part of the cut. This quantity should be
real, so the condition p(x)dxr € R determines how exactly the cut will bend. Qualitatively
it is shown on Fig. 6. Second, far away from the cut, in particular for large positive =, we
should have \/Q(z) ~ mnx > 0. However if we start from large positive z and go along the
real axis to the point # = 0, we will cross the cut. This means that when evaluating G(z) at
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x = 0 we will have to take v/Q(z) = —1, not +1. Now it’s clear that (5.32) indeed satisfies
all the constraints we discussed?!.

Finally, to extract the energy, notice that in the classical limit

2 [d
RO R O R 639

i.e. the energy is proportional to the linear coefficient of the resolvent’s Taylor expansion in
(5.27). From (5.32) we thus get

212m(n — m)
L

We see that we have found the energy by just imposing the correct analyticity, and not
solving the Bethe equations directly at all!

E = (5.36)

The spectral curve in this case consists of two Riemann sheets joined by a single cut,
i.e. it is a sphere. Due to this the solution we found is known as a rational solution. The
solution for the case with e.g. two branch cuts, corresponding to a torus, would be called an
elliptic solution.

Let us finally note that the finite-gap equations played an important role in the devolp-
ment of integrability in the AdS/CFT context. In particular, the classical limit of Bethe
equations derived from gauge theory (conceptually similar to the discussion above) matches
the classical spectral curve of the AdSs x S® integrable string sigma model, providing a nice
demonstration of the AdS/CFT duality (see [24] and the review [23]).

6 Bethe ansatz for the SU(3) chiral Gross-Neveu model

Now our goal is to study the SU(3) chiral Gross-Neveu model. There are now more particle
types, and we will first discuss only the particles in the fundamental representation of SU(3).
That is, we have three particle flavors and the flavor space for each particle is C3. Our goal
is to derive Bethe equations for these excitations. As other particles are their bound states,
these Bethe equations are in fact enough to decribe the full spectrum (see e.g. [9]).

6.1 Nested Bethe ansatz for the SU(3) chain

The method we will use is a more advanced version of the algebraic Bethe ansatz from section
4, known as the nested algebraic Bethe ansatz. 22

2ITn  Wolfram Mathematica the proper choice of branch cut in the square root
\/(ﬂ'nx) + (4mm — 27n)x + 1 appearing in (5.32) would be given for n = 3,m = 1 by
3miy/—i(x — 1)\/—i(x — x2) (this expression however doesn’t take the bending of the cut into ac-
count). The extra factors of ¢ ensure that both square root factors have cuts going off to infinity in the
same direction, so in their product the cut will disappear except between the branch points.

22Let us note that the SU(3) spin chain and many other models with higher rank symmetry group can
also be solved by a coordinate rather than algebraic version of the nested Bethe ansatz which also proved
useful in AdS/CFT (see e.g. [25] and references therien).
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It will be more convenient to use a slightly different parameterization of the energy and
momentum compared to what we had (Eq. (4.1)) in the SU(2) case, namely we take®?

E = mcosh %, p= msinh% . (6.1)

Then extracting from the S-matrix the scalar prefactor (see e.g. [9] and references therein),

Sia(p1,p2) = SO (uy — ug) Ry (w1 — uz) (6.2)
(1 — (242
5wy = — B8 (©:3)
L1+ 22— &)
we have the R-matrix ]
R(u) = P 4
R(u) T (u+2iP) , (6.4)

which has the same form as in the SU(2) case but now acts in C*® C®. The main goal is to
diagonalize the transfer matrix

A

T(u) = Tr,T(u) = Tr, (zizmwl — ) Rog (i — ) . .. Ry (1t — u)) . (6.5)
Let us write out its structure in the auxiliary space explicitly, in the following notation:

7?00(“) Bl (u) ]?2(?0
To(u) = ql(u) 1n(u) Tio(u) ] - (6.6)
Co(u) To(u) Tha(u)

The commutation relations between the entries follow from the RTT relation as usual. In
particular,

[Bi(u), Bi(v)] =0,  [Ba(u), Ba(v)] =0, (6.7)
Bi(w)Bav) = ———— By(o) Ba(u) + #:%BI(U)BQ(U) | (6.8)

While one can do the calculation in a more abstract way we will use index notation to ensure
full clarity. We will have Greek indices «, 3, ... and Latin indices a, b, ..., all of which take
values 1 and 2. In this notation the relations for commuting the 7"’s with the B’s read

~ - v—u—21 2 . 21 .
Too(u)Bo(v) = ——————— By (v)Too(u)+ B (u)Too(v) (6.9)
v—u v—u
and
A ~ v—u+2i ., - . 2 4 .
Too (w)Bg(v) = ﬁRa’ﬁ(v — u)Bw(v)TM(uH—u — By (u)T,s(v) (6.10)

where we marked by red the 'unwanted’ terms, i.e. those that later will cancel when we
construct the eigenstate and impose the Bethe equations. Remarkably, the SU(2) R-matrix

23We use this notation so that the R-matrix in (6.4) that we get here is the same as we had before in the
SU(2) case.
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which we denote as R(u), appears in these equations. Explicitly its nonzero elements are, as
before,

Ryt (u) = R33(u) = 1, (6.11)
U 21
R3(u) = R = ——. R = REw = — (6.12)

While in the SU(2) case we had B(u) as a creation operator, here we have two candidates
— By(u) and By(u). Let us try to build the eigenvectors as

= Bu,(v1)Bay(v2) . .. Ba, (v5) F*1%|0) (6.13)
{a}
with aq, as, ... taking the values 1 or 2, and the vacuum is as usual
1 1
O =|M™..H=(0]®---2 0] . (6.14)
0 0

Let’s assume for now that there are no unwanted (i.e. red) terms in the commutation
relations, and act with T'(u) on this state. From Ty we get

Too(u)|0) = |0) (6.15)
and Vg — U — 2%
Too(uw)|®) = ] k%—_u|‘1’> : (6.16)

Then let’s see what we get acting on our state |¥) with the rest of the trace of T'(u), i.e.
with > Tha. Let’s take for a start a state |¥) with only two excitations,

W) = Ba, (1) Bay (v2) F120) . (6.17)
Then
~ V1 —U + 21 T1b1 - > ajag
TuaW)W) = SR (01 = ) By (00) i, (1) By (02) F210) (6.13)
v —u+2tvy—u+2_ . - - i
= O IR (0 — wRRE (02 — 1) By (00) By (1) T () F210)

Finally, the operators 1, op act on the vacuum in a very simple way. That is,

)|0) _5Q5H H% 0) . (6.19)

So we get

vl—u+2iv2—u+2i1—[ Uj —u

Too(w)|V) = :
(w)¥) v —u Vg —u Lt u; —u+ 20

(6.20)

« Rﬁbl( vy — )]RTQI’2 (v2 — u) By, (v1) By, (v2) F*1*2|0) .

ToQ1 T1a2
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In the indices of the R-matrices there is now a clear pattern, so we see that for any number
of excitations as in (6.13) we would get

. - 2i - L
T (W)U = H@Z;i;qiwﬁuﬁmrp%@mm (6.21)
k=1 i k=1
x RO () — w)RED (vg — w) .. R0 (v, — w) P12
But this product of R-matrices is the transfer matrix of an SU(2) spin chain! It has free
indices aq, ..., a, and by,...,b,, so it acts on the product of vector spaces V1 ® - -- ® V,, with
each V; ~ C%. And F*%- is the set of coordinates of a vector in that tensor product, or
in other words the wavefunction of an SU(2) chain with n sites. The first upper index and
the first lower index of each R-matrix are the indices in the auxiliary space and they are
contracted with the neighbouring R-matrices. So we have a product of R-matrices along the
auxiliary space and we take a trace over this space. This is precisely the transfer matrix of
the SU(2) spin chain on n sites. Notice that vy, ..., v, are the inhomogenieties in this chain.

The ay indices are contracted with F'| so if F' is an eigenstate of this transfer matrix we
see that Ty, (u) will act diagonally on |W) — which is what we want. So we have reduced the
initial SU(3) problem to an SU(2) one. This is why the approach we are discussing is called
“nested algebraic Bethe ansatz”.

Of course we already solved the SU(2) spin chain, so we know how to diagonalize this
transfer matrix. States will be created by its off-diagonal element, and are parameterized by
yet another set of Bethe roots, which we call w,,. (It’s the third one - in addition to u; and
v.) Then we take as F'**% the wavefunction of this state:

Far-an = (] SU(2) eigenstate ))* " . (6.22)

For example, F'?? is the coefficient of the term | 1)) in the eigenstate of the SU(2) chain.
The new Bethe roots satisfy the SU(2) Bethe equations (4.28) with inhomogenieties set to

be v:
Wy, — Vg + 1 Wy, — Wy + 21
= . 6.23
E[wm—vk—i mgmwm—wm/—Qi ( )

The corresponding eigenvalue of the SU(2) transfer matrix is given by (4.29),

Nsprn(u) = [[ e tm B0 T A bm = (6.24)

U — Wy, — 1 . u—vk—Qim U — Wy, — 1

m

Then, we can assemble all our calculations to write the result for the full transfer matrix
eigenvalue,

(Too(w) + Ti1(u) + Tho(u))[0) = A(u)|0) (6.25)
where
Aw) = ] Ukv_k—li;?l +Asve () [ ] Uk;g 11:; &l I1 uju_j ;f: = (6.20)

k k
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During this whole discussion we of course ignored the extra terms in the commutation
relations. One can show that they will cancel provided the roots vy, satisfy a set of constraints
which are the Bethe equations for this model. Showing this requires some careful and lengthy
work, and we will not do this here. Some guidance for a similar model can be found in [26].

Rather than going into details of this derivation we will follow instead a shortcut which
gives the same Bethe equations. Recall that for SU(2) one way to derive the Bethe equations
is to require cancellation of spurious poles in the transfer matrix eigenvalue. We can do the
same here. We see that A(u) appears to have poles when u = v which in fact should be
absent as the transfer matrix is not singular at those points. Demanding that the residue at
u = vy vanishes we find

—_— /I 2. _— / 2. y !
0= (—20) JT 2220 4 Agpy(ow) x 20 x [ 2—W 24— (627)

k£K Vg — Uk kK Vg — Uk j Uj — Vgt + 2

(note that Agy(o) is clearly not singular at this point). Plugging in Agy(2)(ver) from (6.24),
where only the first term is nonzero, we get

O:_Hvk—vk/—2i+Hvk/—wm+iH Uj — Vg . (6.28)

Py Vg — Vg + 21 . Vg — Wy, — & u]’—’l)k/—i-?i

J

Shifting v, = U + ¢, w,, = W,, + ¢ and dropping the tildes we get

O:_HUk—vk/—2i+HUk/—wm+iHUj—Uk/—i (629)

Vp — U 21 Vit — Wy, — 1 Ui — U 7
roi Uk k + S Up m U g+

Note that the Bethe equations (6.23) for w’s do not change under this shifting. So, we find

Hvk/—uijZ::Hvk/—vk+2i1—[vk/—wm—i (630)

Vi —U; — 1 Uk/—l)k—2i Vg — W —I—Z,
j J k#k! m m

while the w’s satisfy the same equations as before in (4.28) but with inhomogeneities vy,
Wy — Up + 1 wj — Wy + 21
| R, y RS (6.31)
S Wy~ Uy — 1 k#jwj—wk—Zz

The equations above determine the eigenvalue of the SU(3) transfer matrix and in par-
ticular of the SU(3) version of the XXX spin chain Hamiltonian. Like in the SU(2) case this
Hamiltonian is expressed in terms of the transfer matrix as in (4.9)

N d o
H= z'%logT(u) L (6.32)
and can be written explicitly as
Ny
H = const x Z (1 — Pk7k+1> , (6.33)
k=1
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the only difference with the SU(2) case being that it now acts in the tensor product of C?
rather than C? spaces.

Let us also note that for the SU(2) chain we had one type of Bethe roots (wy) parame-
terizing the eigenstates, while here we have two types — v, and wy. In fact one should think
of each Bethe root type as associated to the nodes on the Dynkin diagram of the symmetry
group. In our case, accordingly, SU(2) has a Dynkin diagram with only one node, while for
SU(3) there are two nodes. One can also consider spin chains with higher rank symmetry
groups G beyond the SU(2) and SU(3) cases. Accordingly, instead of C? or C? one one
would have at each site of the chain a higher-dimensional complex space. At least for most
of the compact simple Lie groups G, the corresponding spin chain again can be solved by
Bethe ansatz, and the Bethe equations are written in a uniform way in terms of the group’s
Cartan matrix as well the representation of the group chosen at each site (see e.g. the review
[9] and references therein). A similar story continues to hold even for super Lie algebras,
in particular for the algebra psu(2,2]4) which underlies the structure of Bethe equations
describing the spectrum of long operators in N/ = 4 supersymmetric Yang-Mills theory [3].

Finally we can assemble the equations for the spectrum of the SU(3) chiral Gross-Neveu
model. Using the expression above for the eigenvalue of the SU(3) transfer matrix, we can
write the periodicity condition as

. Uj — Vg +1
epi L S53) (e — - =1, 6.34
[Ts - T =0 (6:34)
together with equations for auxiliary Bethe roots
Vg — U; + 1 Vp — U + 21 Vg — Wy, — 1
Hvk—u]—z_Hvk—vk—%Hvk—w +i’ (6.35)
Ok j rip UK k % m
w; um+z wj — Wy + 21
= 6.36
ij—um ij—wk—Zz ( )

m

The energies are as usual a sum of single particle energies (notice we use the parameterization

(6.1)) .
E = chosh % : (6.37)

Thus we have completed the solution for the spectrum of the SU(3) Gross-Neveu model in
large volume L.

7 Bethe ansatz for the harmonic oscillator

Let us discuss in this last section a completely different setting where Bethe-like equations
also appear. Namely, one can use a kind of Bethe ansatz to get eigenstates of the very
well-studied one-dimensional harmonic oscillator in quantum mechanics (for a more detailed
discussion of this case see e.g. [27]). Thus, we are studying the Schrodinger equation
h2
—%1/1”(95) + V(x)(x) = Ev(z) (7.1)
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with the potential

2,2
V@y:méx. (7.2)
Let us introduce the so-called quasimomentum
hy'(z)

p\r)=— ) 7.3
@ =550 (73)

in terms of which the Schrodinger equation takes the form
p*—ihp =2m(E-V). (7.4)

As 1)(z) is regular, the only singularities of p(x) are at the zeros © = x; of the wavefunction,
where the quasimomentum has simple poles with residue %

In the classical limit, i.e. for highly excited states, we get from (7.4)
p=pa=+2m(E-V) (7.5)

so now the quasimomentum has a branch cut. This cut can be understood as a collection
of poles at x;, which become denser and denser, eventually forming a smooth distribution
giving rise to a cut. The situation is very similar to the classical spectral curve of the XXX
model we discussed in section 5.2

Let us now see that for any state (not necessarily semiclassical) we can derive a simple
set of equations fixing the positions of these poles. At large = we have

p(z) = imwz + O(1/x) , (7.6)

SO we can write

1

[L'—ij

h
p(z) = imwz + n Z

(7.7)

From the large = asymptotics of (7.4) we can already find the spectrum! It reads

E:m(N+9. (7.8)

From (7.4) we also get a set of Bethe-like equations for the roots,

h 1

Ti=— Y . (7.9)
2wm 7 TP T

They are clearly reminiscent of the usual Bethe ansatz form, with one root in the l.h.s. and

interaction between roots in the r.h.s. As one can expect from the usual form of the oscillator

wavefunctions, the solutions to this equation are the roots of the N-th Hermite polynomial,

2
Hy ( ”;“gsj> ~0. (7.10)

Knowing the roots z; we can also reconstruct the wavefunction from (7.3), (7.7). Equations
similar to (7.9) frequently arise as limiting cases of the Bethe ansatz equations for other
models, e.g. in the limit of large L and fixed number of excitations in the XXX spin chain.
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Abstract

We give a pedagogical introduction to the thermodynamic Bethe ansatz, a method
that allows us to describe the thermodynamics of integrable models whose spectrum is
found via the (asymptotic) Bethe ansatz. We set the stage by deriving the Fermi-Dirac
distribution and associated free energy of free electrons, and then in a similar though
technically more complicated fashion treat the thermodynamics of integrable models,
focusing on the one dimensional Bose gas with delta function interaction as a clean
pedagogical example, secondly the XXX spin chain as an elementary (lattice) model
with prototypical complicating features in the form of bound states, and finally the
SU(2) chiral Gross-Neveu model as a field theory example. Throughout this discussion
we emphasize the central role of particle and hole densities, whose relations determine the
model under consideration. We then discuss tricks that allow us to use the same methods
to describe the exact spectra of integrable field theories on a circle, in particular the
chiral Gross-Neveu model. We moreover discuss the simplification of TBA equations to

arXiv:1606.02951v2 [hep-th] 13 Jun 2016

Y systems, including the transition back to integral equations given sufficient analyticity

data, in simple examples.
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1 Introduction

Integrable models are an important class of physical models because they are “solvable” —
meaning we can often exactly compute various quantities — while sharing important features
with more complicated physical models. In other words, they make great pedagogical tools.
Integrability makes it possible to diagonalize the chiral Gross-Neveu model’s Hamiltonian
for instance [1,2], giving exact formulas that explicitly demonstrate deep quantum field
theoretical concepts such as dimensional transmutation and asymptotic freedom. As part
of a series of articles introducing aspects of integrability [3], in this article we describe
how integrability is used to describe the exact thermodynamics of integrable models, and

relatedly the spectra of integrable field theories defined on a circle, using a method known



as the “thermodynamic Bethe ansatz”.

As the name implies, the thermodynamic Bethe ansatz (TBA) revolves around applying
the Bethe ansatz in a thermodynamic setting. In essence, the Bethe ansatz description
of an integrable model provides us with momenta and energy distributions of particles,
which in principle contains the information needed to determine the density of states in the
thermodynamic limit, and the associated particle and hole distributions in thermodynamic
equilibrium. This approach was pioneered in the late sixties by Yang and Yang [4] who
applied it to the Bose gas with delta function interaction, also known as the Lieb-Liniger
model [5]. It was quickly adapted to lattice integrable models such as the Heisenberg spin
chain [6-8] and Hubbard model [9,10].) The TBA can be used to compute the free energy of
integrable field theories as well, which upon doing a double Wick rotation has an alternative
use in finding their exact ground state energies in finite volume [12]. By a form of analytic
continuation excited state energies can also be computed in the TBA approach [13, 14].
These equations can be simplified and reduced to a so-called Y system [15], which is a set
of functional relations not limited to a particular state which can be the same for different
models. Providing a sufficient amount of analyticity data then singles out a model and
state.?

In the context of the AdS/CFT correspondence, the worldsheet theory of the AdSs x
S® string is an integrable field theory, see e.g. [17, 18] for reviews, and its exact energy
spectrum can be computed by means of the thermodynamic Bethe ansatz [19-23], as first
suggested in [24].> This energy spectrum is AdS/CFT dual to the spectrum of scaling
dimensions in planar ' = 4 supersymmetric Yang-Mills theory (SYM). Provided we take
the AdS/CFT correspondence to hold rigorously, the thermodynamic Bethe ansatz therefore
allows us to find exact two point functions in an interacting, albeit planar, four dimensional
quantum field theory, nonperturbatively. From a different point of view, this approach
provides high precision tests of the AdS/CFT conjecture. The TBA approach has for instance
been successfully matched by explicit field theory results up to five loops for the so-called
Konishi operator [30-33]. The TBA can also be used to compute the generalized cusp
anomalous dimension (the “quark—anti-quark potential”) [34,35], and for instance extends
to the duality between strings on the Lunin-Maldacena background and 8 deformed SYM
[36,37] and the AdS, x CP? string dual to three dimensional N = 6 supersymmetric Chern-
Simons theory [38,39]. Though TBA-like equations have not yet made a clear appearance
in the computation of three point correlation functions in SYM, we can expect they will do

so in the exact solution.

Taking in the above, our motivation for studying the TBA is therefore broadly speaking

"'While we aim to focus on the basic structure, the TBA and related methods also play an important role
in computing more complicated observables such as correlation functions at finite temperature, see e.g. [11].

2Going a bit beyond the scope of the present article, such Y systems together with analyticity data can
be “reduced” even further via so-called T systems to Q systems. Sometimes we can derive such functional
relations by direct computations in a model, which can then be turned into integral equations possibly of
TBA type. This comes back in the article by S. Negro [16].

3In this context the Y system was conjectured in [25] and the required analyticity data clarified in [26-28].

Reducing this results in a Q system, in this context dubbed the quantum spectral curve [29].



twofold: with it we can describe the thermodynamics of nontrivial interacting models of
for instance magnetism and strongly correlated electrons of relevance in condensed matter
physics, as well as the exact spectra of integrable field theories that play an important role
in for example string theory and the gauge/gravity duality. We will not aim to describe the
technical details required for particular applications. Rather, we will focus on the unifying
features of the TBA approach, and explain them such that it is clear where and how details
of a particular model are to be inserted. We will nevertheless use concrete examples, first of
all the original case of the Bose gas as a particularly clean example where the transition from
Bethe ansatz to thermodynamic Bethe ansatz is a fairly rigorous derivation. We will also
discuss the XXX Heisenberg magnet in the context of spin chains, and the SU(2) chiral Gross-
Neveu model in integrable field theory. These models illustrate complicating hypotheses in
the TBA approach to general integrable models: the presence of multiple interacting particle

species, as well as bound state solutions.

We will begin our discussion with free electrons, a trivially integrable model, where we can
link our approach to standard statistical physics. This allows us to introduce the concept of
density of states, particle and hole density, and the computation of the associated free energy,
and reproduce the well known Fermi-Dirac distribution. Following Yang and Yang’s original
paper, we then extend this framework to the delta function Bose gas. Continuing to the XXX
spin chain and SU(2) chiral Gross-Neveu model in the same spirit, requires us to introduce
the so-called string hypothesis, which ultimately results in an infinite set of TBA equations.
We discuss how these TBA equations can be “simplified” and reduced to a so-called Y
system. Next we discuss the TBA approach to exact ground state energies, and indicate
how excited state TBA equations can be obtained by analytic continuation, motivated by
a toy model example. Relatedly, we discuss the link between the TBA equations and so-
called Liischer corrections, providing analyticity data for excited states. We briefly discuss
universality of the Y system for excited states, how to transfer between TBA and Y system
plus analyticity data, and the relation of the analyticity data to specific models and states.
Two appendices contain details on integral identities and some comments on numerically

solving TBA equations.

2 The thermodynamic Bethe ansatz

In an integrable model we usually have a set of Bethe ansatz equations that determines the
momenta of particles of any state of the theory, either exactly, or approximately in a large
volume limit. In what follows we will assume these to be given, for instance following the
discussion in [40]. Combining these Bethe equations with the dispersion relation of the theory
under consideration, we can determine its (approximate) energy spectrum. What if we are
interested in the thermodynamic limit? Since we can in principle determine the possible
and actual momentum distributions of particles for any given set of finite quantum numbers
(at large volume), we might be able to determine nontrivial thermodynamic quantities by

summing up many contributions. The technical way to do this goes under the name of
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Figure 1: The quantum number lattice for electrons. States of an N free electron state on a
circle can be labeled by a set of IV integers, split in sets of distinct ones for each spin. Here
these integers are represented by filled dots, open dots representing available (unoccupied)

quantum states, depicting a state with two spin up electrons and four spin down electrons,
with momenta —27/L and 0, and —67 /L, —4xw/L, —27/L, and 87 /L respectively.

the thermodynamic Bethe ansatz, as originally developed by Yang and Yang for the one
dimensional Bose gas with delta function interaction potential [4]. We will get to this model
and the chiral Gross-Neveu model shortly, but let us begin with a trivially integrable model:

free electrons. Our discussion will be similar to section 5.1 of [10].

2.1 Free Fermi gas

Free electrons on a circle are an exactly solvable model. Since the particles do not interact
(except for Pauli exclusion), wavefunctions are just superpositions of standing waves on the

circle, each coming with a momentum quantization condition

. 2mn;
el =1 = p; = LJ

(2.1.1)

Were we to consider fermions on a periodic lattice (with spacing one), mode numbers would
of course only be meaningful modulo L. The Pauli exclusion principle now simply requires
that each state is made up of electrons with distinct sets of quantum numbers (including
spin). Note that the above equations are nothing but the simplest of Bethe equations. In
fact, you might recall that in the Bethe ansatz two identical particles by construction cannot
have equal momenta either, which is why we are looking at free fermions rather than free
bosons. An N particle state can now be classified by N quantum numbers n;, split in two
sets {n;’} of distinct numbers, where o = :I:% denotes spin of the electrons, cf. figure 1. In
this integer space, the number of possible states per unit interval — the total density of states
— is one. Due to the linear relation between momentum and these integers, the total density

of states for free electrons of spin ¢ in momentum space is also constant,

1 1 1

(pi) = ————— = —. 2.1.2
pa (i) Lpiti—pi 2w (2.12)

As usual in thermodynamics we will introduce the partition function
Z = (Pnle P |py) = e, (2.1.3)
n

where 8 = 1/T is the inverse temperature, and F' is the free energy. From here you can

compute various thermodynamic quantities, especially upon including chemical potentials



(in H if you wish). In particular, via various paths familiar from basic statistical mechanics,

you can derive the momentum distribution of free fermions in thermal equilibrium

1 1

o T (2.1.4)

prD(p) =

known as the Fermi-Dirac distribution. Here E(p) is the dispersion relation of the fermions.
We will directly compute the full partition function for free fermions in the large volume
limit, in a way that will extend to general integrable models where we only have an implicit

description of states at asymptotically large volume.

In the large volume limit, states with finite numbers of particles contribute negligibly to the
partition function so we will consider the limit L. — oo considering states with finite density
N,/L, N, denoting the number of electrons with spin o. These N, particles have distinct
momenta that need to occupy N, of the allowed values of momentum. If a momentum value
is taken we will talk of a particle with this momentum, and if it is not, a hole, as in figure
1. Since we want to describe finite density states, let us introduce densities for particles and

holes as

Lp{; (p)Ap = #of particles with spin ¢ and momentum between p and p + Ap,
Lﬁg(p)Ap = #tof holes with spin ¢ and momentum between p and p + Ap.

By definition these add up to the total momentum density of states, i.e.

1

Py (p) + 25 (P) = po(p) = 5

(2.1.5)
Now, to compute the partition function in a thermodynamic picture we need the free energy
F = FE—-TS, in other words the energy and entropy of possible configurations. By definition

the energy density of any given state is

R
e= ZZZEU(M% (2.1.6)

o j=1
:ZZEU@J-)LZ]*; L (2.1.7)

—ZZE i) (Pit1 — )Pk (ps); (2.1.8)

where the last line is nicely of the form of a discretized integral, appropriate for the large

o= [ @S 0w (219)

where we write pa( ) for the L — oo limit of pz (pj) In a lattice model we would integrate

volume limit. There we get

from 0 to 27 (given appropriate normalization choices). Next we want to find an expression

for the entropy, the logarithm of the number of available states. By definition

(LAp;ps(pj))! 2.1.10
gH (LAp;ph(p)!(LAP; L (p))! ( |



which in the large volume limit we can approximate via Stirling’s formula, logn! = nlogn —
n+ O(logn), as

AS(pj) = LAP; Y po(p;) 108 po (pj) — p(pj) log pl(ps) — ph(pj) log ph(pj).  (2.1.11)
g
In the thermodynamic limit the entropy density is thus given by

sz/_ depa )10g po (p) — p4(p) log pf(p) — pL(p)log oL (p). (2.1.12)

Putting all this together we find that the free energy density f at temperature T, f = e—T's,
is given by

F= /oo dp " Eq(p)pl(p) — T(ps(p) 1og po(p) — p(p) log pl(p) — %(p) log 54 (p)). (2.1.13)

This is a functional of the densities p, and thermodynamic equilibrium corresponds to its
stationary point. To find this stationary point we should vary f with respect to pg and
pg, but these are not independent! The hole and particle densities are constrained by eqn.
(2.1.5), which means

opl = —opl. (2.1.14)
We then have
= ps(p) < ¢ Ps(p) <y
of = / dp)  E,(p)ph(p) =T <1og 6p5(p) + log 6p5(p) (2.1.15)
—00 Z P (p) 5 (p)
:/ dpdpl(p (ZE log f(p))zo (2.1.16)
e P (p)
from which we conclude ;
/%;7(1@ = BT, (2.1.17)
pz(p)

Together with eqn. (2.1.5) this gives

¥ 1 1

P2 (P) = o BT (2.1.18)

which is nothing but the Fermi-Dirac distribution (2.1.4) (here derived in infinite volume).

Now we can insert this and the corresponding ﬁ(’; back into the free energy to find
f= / Z log(1 + e~ E- /T, (2.1.19)

This is the well known infinite volume free energy of a Fermi gas.

We would like to follow this approach to describe the thermodynamics of general integrable
models, where the relation between particle and hole densities is not as simple as eqn. (2.1.5),
but nevertheless known. Let us begin with the integrable model for which this was originally

done.



2.2 The Bose gas

The Bose gas, also known as the Lieb-Liniger model, is a system of IV bosons interacting via

a repulsive delta function interaction. The Hamiltonian is given by

N 52
H:ZaamquZcZ(;(:Cixj), (2.2.1)
j=1 """t i>j
with ¢ > 0, and we consider it on a circle of circumference L. This model was ‘solved’ by
Bethe ansatz in [5]. Based on this the thermodynamics of the model were described by Yang
and Yang [4], leading to what is now known as the thermodynamic Bethe ansatz. In this
section we follow their timeless 1968 paper fairly directly. The nice point about this model
is that some things we will have to assume later, can be made precise here. The starting

point for our analysis will be the Bethe equations of the Bose gas

N .
el — T P Petre (2.2.2)
ktj Pj — Pk —1C
from which we see that we have an S-matrix given by
Pl — Pm — iC
S(py, = S(p — B S 2.2.3
(p1;pm) = S(p1 — pm) p—— (2.2.3)

The solutions of these equations are real.* The dispersion relation of these bosons is just
the free E(p) = p.
To get the momentum density of states we need to take a logarithm of the Bethe equations,

just as we did for free particles above. To do so we note that
S(p) _ _eQiarctanp/c = _eiw(p)7 (2.2.4)
so that we get

orl; =p;L—i» logS(pj—pr) =p;L+ > (b(p; —pr) +7), (2.2.5)
k k

which is all defined up to the integer I; defining the branch of the logarithm that we take.
In the original paper the factor of N7 is absorbed in these (then possibly half) integers; we
simply take the logarithm of the S-matrix on the right hand side, as this naturally generalizes
to any model. These integers I; are in one to one correspondence with solutions of the Bethe
equations, just as for the free particle. To prove this, Yang and Yang introduced what is

now known as the Yang-Yang—functional.

4Consider the equation for the momentum with maximal imaginary part (pick one in case there are
multiple), then the right hand side of the equation necessarily has norm greater than or equal to one. The
left hand side however has norm less than or equal to one. Therefore we conclude the maximal imaginary

part is zero. Similarly, the minimal imaginary part is zero.



2.2.1 The Yang-Yang—functional

Let us define

N N
B(py,...,pn) = 3L szz - WZ(QIJ‘ +N —1)p; + %Z (V1(Pn — Pm)) (2.2.6)
=1 Jj=1 n,m
where ) )
Y1(p) = / »(p')dp' = / 2 arctan %/ dp'. (2.2.7)
0 0

The nice thing is that by construction B is an ‘action’ with the Bethe equations (2.2.2) as
‘equations of motion’. Moreover, the matrix §*B/0k;0k; is positive definite, since the first
term in B contributes positively, the second nothing, and the third is positive-semidefinite
since 1'(p) > 0. So B has a unique extremum, a minimum, whose location is determined by
solutions to the Bethe equations. Furthermore, all involved quantities clearly depend con-
tinuously on ¢ (via the S matrix). Now in the limit ¢ — oo we want to find the wavefunction
for N free particles, under the constraint that it vanishes when any two of its arguments
coincide, thanks to the infinitely strong repulsion at coincidence. Playing around with this
problem a bit in the way that we learn in a course on quantum mechanics, we would find
that such wave functions are precisely of Bethe ansatz form, with S = —1, precisely the

¢ — oo limit of our S matrix. At this point we have
pj = (2I;+ N —-1)r/L, (2.2.8)

i.e. the momenta are uniquely identified by the integers I (for a given number of particles
N). By continuity in ¢ we see that the solutions of the Bethe equations are given by unique
sets of distinct momenta in one to one correspondence with sets of distinct integers I, which
form a complete set of solutions. We can view these I’s as quantum numbers for our problem,

just as they were for free electrons.

2.2.2 Thermodynamics

Now we are in a position to apply the ideas of the previous section on free fermions to the
Bose gas. To start with, we should understand the relation between the quantum numbers

and the momenta in more detail. Let us introduce the so-called counting function c(p) as
Le(p) = — —i——l E log S(p — pr) (2.2.9)
c(p) = 0 . 2.
p p i - go\P — Pk

For the Bose gas you can explicitly see that this is a monotonically increasing function. Now,
if we have a state with quantum numbers {I}, by definition the particle momenta correspond
to the p’s for which Lc(p;) = I;. By analogy we then say that any allowed quantum number
J & {I} represents a hole with momentum Lc(p) = J. We can schematically depicted this
situation in figure 2. The corresponding physical picture is as follows. Since each particle
carries energy p?, by monotonicity of the counting function it is clear that the N particle

ground state has quantum numbers running between —|(N — 1)/2| and [(N — 1)/2] (in



L c(p)

L Ac

PP, Pz P Ap

Figure 2: The counting function for a hypothetical distribution of roots. The blue line
denotes L times the counting function, which takes integer values at fixed values of momenta,
indicated along the function by dots. Open dots indicate unoccupied integers (holes), filled
dots particles. For instance the first particle momentum p; corresponds to quantum number

Le(pr) = 4. The red line is the (everywhere positive) derivative of the counting function.

unit steps). Excited states now correspond to particles living on the same quantum number
lattice (cf. the previous subsection). One or more of them have been moved out of the
ground state interval to higher quantum numbers, however, leaving one or multiple ‘holes’

behind in the ground state lattice, cf. figures 1 and 2.

As before we introduce densities for the particles and holes as

Lp®(p)Ap = #of particles with momentum between p and p + Ap,
Lﬁb(p)Ap = #of holes with momentum between p and p + Ap.

Again the total density of states in quantum number space is one, which in momentum space

picks up a measure factor (Jacobian), cf. figure 2, and we find

_ de(p)
dp ’

p"(p) + 1 (p) = p(p) (2.2.10)

where we have replaced the discrete derivative by the continuous one appropriate for the
thermodynamic limit, and we keep the normalization by 27 /L introduced when discussing
free electrons. In the Bethe equations we encounter sums over particles, which become

integrals over densities since as before

N N

1 Pr—D -

fZlOg S(pj —pk) = ZlOgS(Pj —pk)L(k — bl ] — / dp'log S(p(;) — PP (V).
Py Py Pk — Pk+1 —00

Using relation (2.2.10) to also express the left hand side of the Bethe equations in terms of

10



densities we find

1
P'(0) + 0" (p) = 5+ K xp"(p), (2.2.11)
where
Kop) = — L log S(p) (2.2.12)
P) = 5 ap 08 5); 2.

and x denotes the convolution®

f*g@wifmwvw—ﬁmww (2.2.13)

—00

Equation (2.2.11) is the thermodynamic analogue of the Bethe equations, and the analogue
of the constraint (2.1.5) for free particles (note that eqn. (2.2.11) actually reduces to (2.1.5)

for a trivial S matrix). Now we are in the same position as we were for free electrons.

The free energy is of the same form as before,
f= / dp (pr -T (p log p — p"log p” — p’ log ﬁb>> : (2.2.14)

where we recall that for our almost free bosons E(p) = p?. To describe thermodynamic

equilibrium we should now vary f with respect to p® and p, subject to eqn. (2.2.11) meaning
6p° = —6p" + K % 6p°. (2.2.15)
The result is a little more complicated than before
of = / dp <E6p — (log 5p + log 5p >> (2.2.16)
= / dp 6p° (E T(log 2 - + log (1 + ) K)> (2.2.17)
—0 P
where * denotes ‘convolution’ from the right,
[e.e]
K0 = [ S6KW - p). (22.18)
—00
Introducing the pseudo-energy e by analogy to the free fermion case
E(p) = e@/T (2.2.19)
we see that in thermodynamic equilibrium it needs to satisfy
e(p) = E(p) — Tlog(1 + e /)3 K (2.2.20)

known as a thermodynamic Bethe ansatz equation. This equation can be numerically solved

by iteration, as clearly discussed in appendix A of the original paper [4]. We briefly discuss

5In models where the momenta do not enter the S matrix in difference form, the derivative in K refers to
the first argument (p of S(p,p’)), while the convolution would become an integral over the second (p’). We

will only encounter models where we can pick a parametrization that gives a difference form.

11



some general aspects of solving TBA equations numerically in appendix B. Given a solution
of this equation, the free energy in thermodynamic equilibrium is given by

> d
f= —T/ ilog(ue*/T). (2.2.21)

The above formulae are frequently written in terms of a Y function Y = /T,

In summary, starting with the Bethe ansatz solution of the one dimensional Bose gas with
¢ function interaction, we can continue to use concepts like density of states as we did for
free electrons, because individual momenta are still conserved. The nontrivial S matrix of
the model now results in an integral equation for the particle density in thermodynamic
equilibrium. In this way we reduce the computation of the infinite volume partition function
of an interacting theory to an integral equation that we can solve rather easily at least
numerically, for any value of the coupling c.

In a general integrable model the situation is a little more complicated if its excitation
spectrum contains bound states of elementary excitations. The XXX spin chain is such a

model, and furthermore represents the internals of the chiral Gross-Neveu model.

2.3 The XXX spin chain

The Heisenberg XXX spin chain is a one dimensional lattice model with Hamiltonian

Ny
J I
H= ~1 ;:1 (05 - 0it1—1), (2.3.1)

where & is the vector of Pauli matrices. We take the lattice to be periodic; on,+1 = o71.
This Hamiltonian acts on a Hilbert space given by Ny copies of C2, one for each lattice site
i. Identifying (1,0) as |1) and (0,1) as |]) , states in this Hilbert space can be viewed as
chains of spins, in this case closed. For J > 0 this is a model of a ferromagnet where spins

prefer to align, while for J < 0 we have an antiferromagnet where spins prefer to alternate.

The Bethe equations for this model are

Ng
j=1
where
pi = p(vi), p(v) = —ilog S' (v), (2.3.3)
and 9 1
SU(w) = L2 gl () = Y08 92.3.4
()= 22 §Y(w) = 2 (23.4)

These equations are the homogeneous limit of the auxiliary Bethe equations of the chiral
Gross-Neveu model we will encounter later, where the “f” will stand for the fermions of
this model. The reason for the remaining notation will become apparent soon. The energy
eigenvalue associated to a solution of these Bethe equations is

1

—_ 2.3.5
v2 41 ( )

E =) Ei(v;), where Ei(v)=—-2J
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2.3.1 The string hypothesis

To describe the thermodynamics of this model, we would like to understand the type of
solutions these equations can have, specifically as we take the system size Ny to infinity.5
The situation will be considerably different from the Bose gas that we just discussed, because
here we can have solutions with complex momenta,” For real momenta nothing particular
happens in our equations, and we simply get many more possible solutions as Ny grows. If
we consider a solution with complex momenta, however, say a state with Im(p;) > 0, we

have an immediate problem:
ePaNr 0, as Ny — oo, (2.3.6)

We see that the only way a solution containing p; can exist in this limit is if this zero is

compensated by a pole in one of the S (eqn. (2.3.4)), which can be achieved by setting
vy = v1 + 20. (2.3.7)

At this point we have fixed up the equation for p1, but we have introduced potential problems
in the equation for ps. Whether there is a problem can be determined by multiplying the

equations for p; and po so that the singular contributions of their relative S-matrix cancel

out
N Ng Ng
/PNy TTS () — ) [T M (vo — v5) = ' ®rFPINs TT 5™ (01 — 03) 8™ (vg — i) = 1,
i1 i£2 i#1,2

and the two particles together effectively scatter with the others by the S matrix

V—U; — 3V —v; — 1

S2 (0 —u) = S (01 — v)S M (v — 1) =
(U UZ) (vl Uz) (Uz UZ) v—v;+3v—v; + i’

where v = (v1 +v2)/2 = v1 +i. If the sum of their momenta is real this equation is fine, and
the momenta can be part of a solution to the Bethe equations. In terms of rapidities this

solution would look like
v=v—1i, vo=v+1i, vER. (2.3.8)

On the other hand, if the sum of our momenta has positive imaginary part we are still in
trouble.® In this case, since we should avoid coincident rapidities in the Bethe ansatz, the

only way to fix things is to have a third particle in the solution, with rapidity
v3 = Vg + 21. (2.3.9)

As before, if now the total momentum is real the equations are consistent and these three
rapidities can form part of a solution. If not, we continue this process and create a bigger
configuration, or run off to infinity. These configurations in the complex rapidity plane

are known as Bethe strings, illustrated in figure 3. Since our spin chain momentum p has

SHere we directly follow the discussion of this topic in [41].
"They exist for instance for the Bethe equations with N =5, N, =2.
8By rearranging the order of our argument (the particles considered) we do not have to consider the case

where the remaining imaginary part is of different sign.
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Figure 3: Bethe strings. Bethe strings are patterns of rapidities with spacing 2:. Here we
illustrate strings of length three, eight, one and four, with center 1/8, 3/8, 5/8 and 7/8

respectively.

positive imaginary part in the lower half of the complex rapidity plane and vice versa, strings
of any size can be generated in this fashion by starting appropriately far below the real line.”

Concretely, a Bethe string with @) constituents and rapidity v is given by the configuration

{vot={v—-(Q+1-2j)ilj=1,...,Q}, (2.3.10)

where v € R is called the center of the string. Full solutions of the Bethe equation in the
limit Ny — oo can be built out of these string configurations. Let us emphasize that these
string solutions only “exist” for Ny — oo. At large but finite N; root configurations are
typically only of approprimate string form.

These (Bethe) strings can be interpreted as bound states, having less energy than sets of

individual real magnons.'’ For example, the energy of the two-string (2.3.8) is

1 1 2
E =E E =-2J =-2J——= 2.3.11
2(6) = Blon) + Bluz) = 27 (i 4 oy ) — e (234D
which is less than that of any two-particle state with real momenta:
Es(v) < E(01) + E(02) for v,012 € R (real momenta). (2.3.12)

Similarly, the energy of a @Q-string is lower than that of () separate real particles and is given

by

Eqv)= > E(vj):—2Jv2$Q2. (2.3.13)
vi€{vg}

This is most easily shown by noting that

(2.3.14)

9In other models the pattern of possible string configurations can be quite complicated, see e.g. chapter
9 of [8] for the XXZ spin chain as a classic example, or [42] and [43] for more involved examples.
0The corresponding Bethe wave-function also shows an exponential decay in the separation of string

constituents.
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and the particularly simple expression for the momentum of a @-string

, (2.3.15)

vi—ipe=t V1
i v+ " v+

as follows by cancelling numerators and denominators in the product as

indicated.

We have just determined that the possible solutions of the Bethe equations in the limit
Ny — oo are built out of elementary objects called Bethe strings (a one-string being a normal
magnon). Interpreting them as bound states, the spectrum thus obtained is reflected by an
appropriate pole in the two-particle S-matrix. This example is not a field theory, but such

patterns generically hold there (as well).

So far so good, but ultimately we are interested in thermodynamic limits, meaning we
should take Ny — oo with N,/Ny < 1/2 fixed — the number of magnons goes to infinity as
well. In this limit the analysis above is no longer even remotely rigorous since an ever growing
product of magnon S-matrices with complex momenta can mimic the role of the pole in our
story for example. Still, since such solutions seem rather atypical and at least low magnon
density solutions should essentially conform to the string picture, we can hypothesize that
‘most’ of the possible solutions are made up of string complexes, in the sense that they
are the ones that give measurable contributions to the free energy. Indeed in the XXX
spin chain there are examples of solutions that do not approach string complexes in the
thermodynamic limit [44-46], but nonetheless the free energy is captured correctly by taking
only string configurations into account [47]. The assumption that all thermodynamically
relevant solutions to the Bethe equations are built up out of such string configurations, and
which form these configurations take, goes under the name of the string hypothesis. More
details and references on the string hypothesis can for example be found in chapter four
of [10].

Bethe equations for string configurations

With our string hypothesis for possible solutions in the thermodynamic limit, we would like
to group terms in the Bethe equations accordingly — the N, magnons of a given solution
of the Bethe equations should arrange themselves into combinations of string complexes.
Denoting the number of bound states of length @) occurring in a given configuration by Ng

we have
[e'e} N, Q

ﬁ = 1111 II - (2.3.16)

=1  Q=11=1je{vg,}

under the constraint

o0
> QNg =N.. (2.3.17)
Q=1
We can then appropriately represent the Bethe equations as
PN T T S™ vi = vou) = —1, (2.3.18)
Q=11=1
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where

SOw-wg)= J[ S"(w—uwy). (2.3.19)
wie{wg}

At this point not all N, Bethe equations are independent anymore, as some magnons are
bound in strings — only their centers matter. We already saw that we can get the Bethe
equation for the center of a bound state by taking a product over the Bethe equations of its

constituents, so that our (complete) set of Bethe equations becomes

ele] NQ
P N TT T187 9 wes — vou) = (-1)7, (2.3.20)
Q=11=1
where
SPMwp —w)= J[ S"(vi —w). (2.3.21)

UiE{vp}

Note that we include the term with (Q,1) = (P,r) in the product above since we took the
product in the Bethe equations (2.3.2) to run over all particles. Since STP(0) = (—1)* =
(—1)P however, we could cancel this (Q,l) = (P,r) term against the (—1)F in the Bethe

equations for string configurations if we wanted to.

Physically these expressions represent the scattering amplitudes between the particles
indicated by superscripts. These products of constituent S-matrices typically simplify, but
their concrete expressions are not important for our considerations (yet); what is important
is that they exist and only depend on the centers of the strings, i.e. the overal momenta of
the bound state configurations. Combining a set of magnons into a string (bound state) is
known as fusion, and the above product denotes the fusion of the corresponding scattering
amplitude. You might have encountered similar ideas applied to obtain bound state S-
matrices from fundamental ones for instance in [48], here we just did it at the diagonalized

level.

2.3.2 Thermodynamics

We now have a grasp on the types of solutions of our Bethe equations in the thermodynamic
limit, though this is far from rigorous. We will assume that our classification of possible
solutions in terms of strings accurately describes the system in the thermodynamic limit.
With this assumption we can proceed as before and derive the thermodynamic Bethe ansatz

equations.

We begin with the Bethe equations in logarithmic form, introducing an integer I in each

equation which labels the possible solutions

[e’e} NQ
—2nIF = Nyp®(vp,) —i H Hlog SFC(vp, —vg.). (2.3.22)
Q=1 %;1
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We choose to define the integer with a minus sign for reasons we will explain shortly. As by

now usual, the solutions to these equations become dense
U — U5 ~ O(l/Nf), (2.3.23)

and we generalize the integers I to counting functions of the relevant rapidity (momentum).

Concretely
P PP 1 & PQ
Nyc'(u) = =Ny 5 97 Z ZlogS (u—vgy), (2.3.24)
Q=11=1
l#r
so that
NycP(v) =17 (2.3.25)

Importantly, in this case we assume that the counting functions are monotonically increasing

functions of u provided their leading terms are,!! and here indeed we have

1 dp”(v)

<0 2.3.26
o dv ’ ( )

the reason for our sign choice above. Clearly in general we have

Li— I

2.3.2
Y (2:3.27)

c(wi) = e(wy) =

Introducing particle and hole densities as before, except now in rapidity space, we get

o () + pP(v) = dc;f”), (2.3.28)

and explicitly taking the derivative of the counting functions gives us the thermodynamic
analogue of the Bethe-Yang equations as
1 dp”(v)

—o KP9 % pQ(v), (2.3.29)

p"(0) +p"(v) =

where we implicitly sum over repeated indices, and defined the kernels K as the logarithmic

derivatives of the associated scattering amplitudes

1 d
KX(u) = i%% log SX(u), (2.3.30)

where y denotes an arbitrary set of particle labels. The sign is chosen such that the kernels are

positive, in this case requiring a minus signs for K™ .12 As before the Bethe-Yang equations

"Here we do not have a convenient positive definite Yang-Yang functional at our disposal. It is not obvious
how to prove that these functions are monotonically increasing for given excitation numbers without knowing
the precise root distribution, which is what we are actually trying to determine. We may consider it part
of the string hypothesis by saying we are not making a mistake in treating the thermodynamic limit as the
ordered limits Ny — oo, then N, — o0, in which case the statement does clearly hold. A discussion with

similar statements can be found on the first page of section six in [49].
12Unfortunately we cannot define a notation which uniformizes both the Bethe-Yang equations in the way

we did and automatically gives positive kernels.

17



come in by giving us the hole densities as functions of the particle densities. Varying egs.
(2.3.29) gives

opf’ +6p" = K9 x6pg, (2.3.31)
Writing this schematically as'3
5pt +0p" = K9 %67, (2.3.32)

after a little algebra we get the variation of the entropy

ds
597 (1)

where again * denotes ‘convolution’ from the right (now in u). The variation of the other

= log Z(u) + log <1 + ;) * K (u), (2.3.33)

terms is immediate, and 6 F' = 0 results in the thermodynamic Bethe ansatz equations
P Ej pt -
log i = log (14 7 * K", (2.3.34)

where by conventional abuse of notation we dropped the tilde on the ‘convolution’. We will

henceforth denote the combination Z—j by the Y functions Y;, meaning the TBA equations

read 5 )
logY; = ?J —log <1 + Yz) * K. (2.3.35)
Taking into account the generalized form of egs. (2.3.29) as
b4 o K % 2.3.36
pPrp=g - K, ( )

on a solution of the TBA equations the free energy density is given by

< 1 dp
f:T/_OOd Q—d—l < Yj). (2.3.37)

Specifying our schematic notation to eqs. (2.3.29) gives

E 1
logYp = ?P + log <1 + Y) * K9P, (2.3.38)

Q

" f= TZ/ du ——1 <1+;P) (2.3.39)

Note the changes of signs due to our conventions on K and p compared to egs. (2.2.20)
and (2.2.21). In stark contrast to the Bose gas, here we are dealing with an infinite set of
equations for infinitely many functions, all functions appearing in each equation.

At this point the generalization to an arbitrary model is hopefully almost obvious, with
the exception of the string hypothesis which depends on careful analysis of the Bethe(-

Yang) equations for a particular model. If we have this however, we can readily determine

13 Apologies for the immediate mismatch of signs, but this is the general form we would like to take, and

cf. eqn. (2.2.11) there is clearly no uniform sign choice.
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the complete set of Bethe(-Yang) equations analogous to the procedure to arrive at eqgs.
(2.3.20). From there we immediately get the analogue of eqs. (2.3.29) by a logarithmic
derivative. Note that since we like to think of densities as positive we may have to invert
the Bethe(-Yang) equations for a specific particle type to make sure the counting function is
defined to be monotonically increasing, just like we did above. This is all we need to specify
the general TBA equations (2.3.35) to a given model. Let us quickly do this for our main

field theory example of the chiral Gross-Neveu model.

2.4 The chiral Gross-Neveu model

The SU(N) chiral Gross-Neveu model is a model of N interacting Dirac fermions with

Lagrangian'

Lo = Gaidd + 162 (Ba®)? — (Burst?)?) = 22 hamut®), (241)
where @ = 1,..., N labels the N Dirac spinors. This Lagrangian has U(N) x U(1). sym-
metry, where viewed as an N-component vector the spinors transform in the fundamental
representation of U(N), and U(1). denotes the chiral symmetry ¢ — €?%¥51). The full spec-
trum of this theory contains N — 1 SU(NN) multiplets of interacting massive fermions, and
massless excitations which carry this chiral U(1) charge that decouple completely.'® We will
focus on the SU(2) model.

As a relativistic model the dispersion relation of the fermions is

E? —p* =m?, (2.4.2)
where m is the mass of the fermions. It will be convenient to parametrize energy and
momenta in terms of a rapidity u as'6

E = mcosh 7%, p = msinh 5. (2.4.3)

Note that Lorentz boosts act additively on the rapidity, and therefore by Lorentz invariance
the two-body S-matrix is a function of the difference of the particles’ rapidities only.

The spectrum of the SU(2) chiral Gross-Neveu model contains two species of fermions
corresponding to SU(2) spin up and down. This model can be “solved” in the spirit of
factorized scattering [50], as discussed for instance in the article by D. Bombardelli [48]. For
the SU(2) chiral Gross-Neveu model the upshot is that the scattering of two fermions of

equal spin has amplitude

O TA-HTG+ 8
St (u) = T %)Fé - %) (2.4.4)

M Our v matrices are defined as vo = o1, 11 = i02, 75 = Yo7y1, where o1 form the Clifford algebra
{7V, 7w} = 20" with n = diag(1, —1). Note that s is Hermitian. As usual ¢ = iy and @ = Y 0,.

5These facts are far from obvious looking at the Lagrangian, see e.g. section 2.4.1 in [41] for a brief
discussion with references. Because of the decoupling of the U(1) mode, g, is typically put to zero in the
chiral Gross-Neveu Lagrangian. Keeping g, 7# 0, however, is useful in demonstrating equivalence to the
SU(N) Thirring model.

16WWe choose this unconventional normalization of u to get Bethe-Yang equations in ‘the simplest’ form.

The relation to the rapidity of D. Bombardelli’s article [48] is simply 6 = wu/2.
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The relative scattering of fermions with opposite spin is fixed by SU(2) invariance, which
leads to a matrix structure matching the R matrix of the XXX spin chain. Diagonalizing

the associated transfer matrix results in the Bethe-Yang equations

Ny Na
el TT S (uj — ) [T S (s — vi) = -1, (2.4.5)
m=1 i=1
Ny Na
H SY (v; — um) H S (v; — ;) = —1. (2.4.6)
m=1 j=1

which apply in an asymptotically large volume limit, suiting us just fine in the thermody-
namic limit. The amplitudes S, S and S/1(v) = S/ (v) are as defined in the previous
section in equation (2.3.4). The N, auxiliary excitations with rapidities v; correspond to
changing the SU(2) spin fermions from up to down; the “vacuum” of the transfer matrix
was made up of spin up fermions (cf. spin up states in the XXX spin chain). Note that
the equations for the auxiliary excitations become the XXX Bethe equations of the previous

section in the limit u,, — 0.

String hypothesis

The two types of fermions of the chiral Gross-Neveu model do not form physical bound states
— there is no appropriate pole in the S matrix.!” However, to take a thermodynamic limit
we need to consider finite density states, meaning we will be taking the limit L — oo, but
also Ny — oo and N, — oo keeping Ny/L and N, /Ny fixed and finite. At the auxiliary level
we are hence taking the infinite length limit of our XXX spin chain, where we did encounter
bound states. The analysis leading to these string solutions is not affected by including the
real inhomogeneities u,, corresponding to the physical fermions of the chiral Gross-Neveu
model. The only difference is that here the XXX magnons are auxiliary excitations, meaning
they carry no physical energy or momentum, and hence the Bethe string solutions lose their
interpretation as physical bound states. Nothing changes with regard to them solving the
Bethe-Yang equations in the thermodynamic limit however, and we need to take them into
account. For the SU(2) chiral Gross-Neveu model we will hence make the string hypothesis

that the solutions of its Bethe-Yang equations are given by
e Fermions with real momenta
e Strings of auxiliary magnons of any length with real center

Fusing the Bethe-Yang equations (2.4.5) and (2.4.6) then gives

N oo No
eril H ST (uj — ) H HSfQ(uj —vg,) = —1, (2.4.7)
m#j Q=11=1
Ny o No
H SP (vp, — um) H HSPQ(vpm —vgy) = (-1, (2.4.8)
m=1 Q=11=1

"In our conventions, bound states must have Im(u) € (0, 2i), see e.g. [51] or section 2.4.1 of [41].
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where

Sy —wg) = H SX (v — w;), x =1, (2.4.9)
wjc{wq}
and
SPX(vp —w) = H S (v; — w), x=f,Q. (2.4.10)
’UiE{’UP}
Thermodynamics

Via the counting functions we get the thermodynamic analogue of the Bethe-Yang equations

pf (u) + pf (u) = ;‘%ﬁ‘) + K 5 pf (u) — K79 % pg(u), (2.4.11)
o () + pF (v) = KPP % pf (u) — KP9 % pQ(u), (2.4.12)

where again the kernels are defined as in eqn. (2.3.30), positivity of the kernels here requiring

minus signs for K/F and KM/, From our general result above we then find the TBA

equations
E 1 It 1 Qr
logYy=— —log |1+ * K —log [1+ — | x K&/, (2.4.13)
T ! Yo
1 1
log Yp = log 1+> * K9 4 log (14— ) » K7, (2.4.14)
Yo Yy
and free energy density
& 1 dp 1
=-T du——1 1+—]. 2.4.15
/ /oo “or du 0g< +Yf> ( )

The thermodynamics of the chiral Gross-Neveu model (and the XXX spin chain), are
determined through an infinite number of integral equations, each directly coupled to all

others. Fortunately, this structure can be simplified.

2.5 From TBA to Y system

In problems where there are (auxiliary) bound states the TBA equations can typically be
rewritten in a simpler fashion. This is possible for the intuitive reason illustrated in figure
4. Since we obtained all bound state S matrices by fusing over constituents, provided S has

no branch cuts the figure shows that

SXQ+L (y ) SXR=1 (v, u)
SXQ (v, u+1)SXQ (v, u — 1)

=1, (2.5.1)

where x is any particle type and we have reinstated a dependence on two arguments for
clarity. We see that (the logs of) our S-matrices satisfy a discrete Laplace equation. Hence

the associated kernels would naively satisfy
KXQ(v,u+1i) + KX9(v,u — i) — (KX (v,u) + KX (v,u)) = 0. (2.5.2)
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Figure 4: The discrete Laplace equation for strings. Shifting a length () string configuration
up by ¢ and another down by i gives a configuration equivalent to two unshifted strings, one
of length @ + 1 and another of length ) — 1, here illustrated for ¢ = 4. The small dots

indicate the position of the rapidities before shifting.

However, when we shift u by +i we may generate a pole in K (v,u + i) for some real value
of v. This can lead to a discontinuity in integrals involving K such as those in the TBA
equations. Therefore we need to understand what exactly we mean by this equation. To do

S0, let us introduce the kernel s

1
= 2.5.
s(u) 4 cosh T’ (2:5.3)
and the operator s~! that in hindsight will properly implement our shifts
frs Hu) = liH(l) (flu+i—ie)+ flu—i+ie)), (2.5.4)
e—
which satisfy
sk s (u) = 6(u). (2.5.5)

Note that s~! has a large null space, so that f xs~!xs # f in general; we will see examples

of this soon. This kernel can now be used to define
(K +1)ph = bpq — Irgs. (2.5.6)

where the incidence matrix Ipg = dp,g+1+9p,g—1, and 7, v is the Kronecker delta symbol.
This is defined so that
(K +D)pp* (K +1)py = Lun, (2.5.7)

where 1 denotes the identity in function and index space: 1y y = 6(u)dp,n. In other words,
the kernel K9 introduced above is supposed to satisfy

KP@ (kPO 1 KFPC 1) w5 = s1pq, (2.5.8)
which we can prove by Fourier transformation, see appendix A for details. Similarly we have
K1Q — (KTQT! 4 K=Y 55 = 560 (2.5.9)
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Note how the naive picture of eqn. (2.5.2) misses the right hand side of these identities. If a
set of TBA equations contains other types of kernels these typically also reduce to something
nice after acting with (K + 1)~

Simplified TBA equations

With these identities we can rewrite the auxiliary TBA equations (2.4.14) for the chiral

Gross-Neveu model as
1
log Yo =log(1+ Ygo41)(1+ Yo_1) xs+dg1log <1 + Y> * 8. (2.5.10)
f

This follows from convoluting the equations for Y541 with s and subtracting them from the
equation for Yg. Note the remarkable simplification that all infinite sums have disappeared!
These TBA equations are not surprisingly known as simplified TBA equations, versus the

canonical ones we derived them from.

We should be careful not to oversimplify however. The fact is that (K + 1)~! has a null
space that is typically of physical relevance. For example, if we take our chiral Gross-Neveu
model and turn on a (constant) external magnetic field B coupling to the SU(2) spin of a
particle, this would manifest itself as a constant term in the ‘energy’ of magnons (i.e. a
chemical potential), and would lead to a term ~ B x P in the TBA equation for Yp, cf.
egs. (2.3.35). Since ¢ s = ¢/2 for constant ¢, such a term is in the null space of (K + 1)1322
(cf. eqn. (2.5.6)), and hence the simplified TBA equations would not distinguish between
different values of this magnetic field. In short, the canonical TBA equations carry more
information than the simplified TBA equations. Though this point will come back below in
section 3.3, we will not explicitly resolve this technical point here.'® The extra information
required to reconstruct our magnetic field for example, lies in the large u asymptotics of the
Y functions, and upon specifying this information our simplified TBA equations are good to
go.

The infinite sum in the main TBA equation can also be removed. Noting that similarly
to K@, KQF gatisfies

K9 —Igps« KPP = 5601, (2.5.11)

we can rewrite the above simplified equations as
1 1
logYg — IgplogYpxs=1Igplog (1+ — | xs+0g1log |1+ — | xs. (2.5.12)
Yp ’ Yf
Integrating with K%/ and using eqn. (2.5.11) we get

1 1 1
logVixs=log(1+— ) *xK? —log(14+ =) *xs+log|1l+—]*sxK, (2.5.13)
Yo ) Y;
or in other words

1 1
log (1 + ) * K9 =log (14 Y1) s —log <1 + ) *xsx K. (2.5.14)
Yo Yy

8Further discussion can be found in e.g. chapter four of [41].
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Figure 5: The TBA structure for the chiral Gross-Neveu model in diagrammatic form. This
graph illustrates the coupling between nearest neighbours in the simplified TBA equations
(2.5.16) or Y system (2.5.17), where the different colour on the first node signifies the fact
that it is ‘massive’ corresponding to the dps0 term in the simplified equations (this is also

frequently denoted by putting a x in the open circle).

The main TBA equation (2.4.13) then becomes
E
log Yy = T —log (14 Y1) *s, (2.5.15)

upon noting that magically enough the Y} contribution drops out completely thanks to
K7Tf = sx K'Y 19 For uniformity we can define Yy = Yf_1 and get

)
log Yar = log(1+ Yary1)(1 + Yar—1) x s — darp <T> (2.5.16)

with Yy =0 for M < 0.

Y system

To finish what we started, we can now apply s~! to these equations to get
Yy Yy =+ Yaren) (1 + Yar—1), (2.5.17)

where the £ denote shifts in the argument by =+i; f*(u) = f(u £ 14). Note that the energy
is in the null space of s~!. These equations are known as the Y system [15]. In general, the
structure of simplified TBA equations and Y systems can be represented diagrammatically
by graphs. For example, in this case egs. (2.5.16) and (2.5.17) can be represented by figure
5. For more general models the Y system is defined on a certain two dimensional grid, for
instance the SU(3) chiral Gross-Neveu model and SU(3) version of the Heisenberg spin chain
would have a Y system corresponding to the diagram in figure 6. These diagrams have a
group theoretical interpretation. We got extra Y functions for the XXX spin chain and
chiral Gross-Neveu model due to the presence of bound states. These bound states of @
particles carry total spin @)/2, which we can put into correspondence with the irreducible
representations of SU(2). For higher rank symmetry algebras like SU(3), the story is similar:
the Y functions correspond to inequivalent non-singlet irreducible representations. The

irreducible representations of SU(3) can be represented by Young diagrams of maximal height

19To show this we can for example compute the integral in the second term by residues. The cancellation
of the complicated scalar factor of the S matrix in the simplified TBA equations appears to be ubiquitous, an
observation first made in [15], as an intriguing manifestation of what must be crossing symmetry. Interestingly,

at least in some cases we can reverse-engineer the scalar factor from this property [52].
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Figure 6: The SU(3) Y system in diagrammatic form.

three. All inequivalent non-singlet ones correspond to diagrams of height two, however, which
match the entire diagram of figure 6 if we draw a square around every node.?’

Let us emphasize again that in this process we lose information at each step along the
way: both (K +1)~! and s~! have null-spaces. Therefore the simplified TBA equations are
only equivalent to the canonical TBA equations provided we specify additional information
on the Y functions such as their large u asymptotics. An alternative but when applicable
equivalent specification often encountered in the literature is to give the large () asymptotics
of the Yg functions.?! The Y system requires even further specifications to really correspond
to a particular model. For example the Y system for the XXX spin chain is given by
dropping Yy from the chiral Gross-Neveu Y system altogether, but this is nothing but the
chiral Gross-Neveu Y system again, just shifting the label M by one unit.

3 Integrability in finite volume

So far we have used integrability to get an exact description of the large volume limit of
our theory, and used this to find a description of its thermodynamic properties in this limit.
When the system size is finite however, the notion of an S-matrix — let alone factorized
scattering — does not exist, making our integrability approach fundamentally inapplicable.
Interestingly however, there is a way around this, allowing us to compute the finite size
spectrum of an integrable field theory exactly. Parts of this section directly follow the

corresponding discussion in chapter 2 of [41].

3.1 The ground state energy in finite volume

Let us not be too ambitious and begin by attempting to compute the ground state energy of
our theory in finite volume. This is possible thanks to a clever idea by Zamolodchikov [12].

To describe this idea let us recall that the ground state energy is the leading low temperature

20There are also many integrable models with so-called quantum group symmetry. The representation
theory in these cases is more involved, and for instance can result in a maximal spin. Correspondingly, in
such cases TBA analysis results in a Y system with finitely many Y functions, see e.g. chapter 7 of [41] for

more details. An extensive review on Y systems and so-called T systems can be found in [53].
21 Already for constant solutions of say the simplified TBA equations of the chiral Gross-Neveu model with

Yo — 0 there is large ambiguity: for constant Y functions the simplified TBA equations are equivalent to
the Y system (of course without rapidities to shift), which is now nothing but a recursion relation fixing
everything in terms of Y1. As will come back below, only one value of this constant corresponds to a solution

of the canonical equations with fixed chemical potentials.
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contribution to the (Euclidean) partition function

el

Z(B,L) = Ze_BE" ~ e BEo as (3 — 00. (3.1.1)
n

We can compute this partition function with our original quantum field theory by Wick
rotating 7 — ¢ = i7 and considering a path integral over fields periodic in ¢ with period
B. Geometrically we are putting the theory on a torus which in the zero temperature limit
degenerates to the cylinder we began with. Analytically continuing & back to T gives back
our original Lorentzian theory. We could, however, also analytically continue 0 — 7 = —io.
This gives us a Lorentzian theory where the role of space and time have been interchanged
with respect to the original model — it gives us its mirror model.?? Putting it geometrically,
we could consider Hamiltonian evolution along either of the two cycles of the torus. Note that
at the level of the Hamiltonian and the momentum the mirror transformation corresponds
to

H —ip, p— —iH, (3.1.2)

where mirror quantities are denoted with a tilde. To emphasize its role as the mirror volume,
let us from now on denote the inverse temperature 8 by R. In principle we can compute the
Euclidean partition function both through our original model at size L and temperature 1/R
and through the mirror model at size R and temperature 1/L. These ideas are illustrated

in figure 7.

To find the ground state energy of our model then, we could equivalently compute the infi-
nite volume partition function of our mirror model at finite temperature, i.e. its (generalized)
free energy F since

Z = LF (3.1.3)

In fact, cf. eqn. (3.1.1), the ground state energy is related to the free energy density of the
mirror model as

Ey = %F = Lf. (3.1.4)

The key point of this trick is that we are working with the mirror model in the infinite
volume limit where we can use factorized scattering and the asymptotic Bethe ansatz of the

previous section, since any exponential corrections to them can be safely neglected.?® The

22A double Wick rotation leaves a relativistic field theory invariant, and hence we do not really need
to carefully make this distinction here. Still, we will occasionally do so for pedagogical purposes. The
integrable models encountered in the context of the AdS/CFT correspondence are not Lorentz invariant for
instance, meaning the double Wick rotation produces a different model. The term mirror model and mirror
transformation were introduced in this context in [19]. Interestingly, the AdSs x S® mirror model — the model
on which the AdSs/CFT4 TBA is based — can be interpreted as a string itself [54,55]. The spectrum of this
string is thereby related to the thermodynamics of the AdSs x S° string, and vice versa [56].

ZNote again that the mirror of a relativistic model is equal to the original (up to the specific boundary
conditions required to compute the same partition function), and therefore the mirror model is immediately
integrable as well. In general the conservation laws responsible for factorized scattering are preserved by Wick
rotations, so that the mirror theory has many conserved quantities and mirror scattering should factorize.
Moreover we can obtain the S-matrix from four point correlations functions via the LSZ reduction formula,

and correlation functions can be computed by Wick rotations.
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Figure 7: The mirror trick. The partition function for a theory on a finite circle at finite tem-
perature lives on a torus (middle). In the zero temperature limit this torus degenerates and
gives the partition function on a circle at zero temperature (left), dominated by the ground
state energy. Interchanging space and time we obtain a mirrored view of this degeneration
as the partition function of the mirror theory at finite temperature but on a decompactified

circle, determined by the infinite volume mirror free energy (or Witten’s index).

price we have to pay is dealing with a finite temperature. Fortunately we just learned how
to do precisely this, and we can compute our ground state energy from the thermodynamic

Bethe ansatz applied to the double Wick rotated (mirror) model.

We should be a little careful about the boundary conditions in our model however. Where
fermions are concerned the Euclidean partition function is only the proper statistical me-
chanical partition function used above, provided the fermions are anti-periodic in imaginary
time. Turning things around, if the fermions are periodic on the circle then from the mirror
point of view they will be periodic in imaginary time, so that our goal in the mirror theory
is not to compute the standard statistical mechanical partition function but rather what is

known as Witten’s index
ZWe:q}<(—1V%*LH>, (3.1.5)

where F' is the fermion number operator. This means we are adding inF'/L to the Hamilto-

nian — a constant imaginary chemical potential for fermions.?*

We should also note that the mirror transformation actually has a nice meaning on the
rapidity plane, provided we adapt it slightly. From our discussion above, we see that the

energy and momentum of a particle should transform as

E —ip, p— —iFE, (3.1.6)

2 invariant. This means we can

which leaves its relativistic dispersion relation E? — p?> = m
parametrize E and p exactly as before (E(u) = cosh 5t and p(u) = sinh *), but let us say

now in terms of a mirror rapidity @. We can then wonder what the relation between u and

24 Continuing along these lines, if we were to consider quasi-periodic boundary conditions instead of (anti-
)periodic boundary conditions a more general operator enters in the trace, which leads to more general

chemical potentials. For details see e.g. chapter two and four of [41].
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% should be. By definition we want
E(u) =ip(a),  p(u) = —iE(Q). (3.1.7)

Now we recall that sines and cosines are related by shifts of 7/2, which in the hyperbolic

case tells us that
E(u—1) = isinh 5 = —ip(—u), p(u — i) = —icosh Bt = —il(Zu). (3.1.8)

Hence we see that if we identify —@ = uw — i, we get what we want. In the literature you
will however typically encounter the transformation u — u +4 (6 — 6 + 4% in the standard
relativistic rapidity parametrization ) which is quite convenient and we will use from here
on out.?> Here the rapidity on the right hand side actually implicitly refers to the mirror

rapidity @, matching our story so that
u—U+1, i.e. U=u—1i. (3.1.9)

This means that in addition to what we are doing here, people frequently do a parity trans-
formation in between. For parity invariant theories this does absolutely nothing, and even
if a theory is not parity invariant, we could simply proceed this way and compute things in

the parity flipped theory, reverting back only at the final stage.

Applying the above discussion to the chiral Gross-Neveu model, we see that we can com-
pute its ground state energy on a circle of circumference L by taking our derivation of the
free energy above, replacing the length L by the mirror length R, replacing the temperature
T by the inverse length 1/L, and adding a constant term i7/L to the dispersion relation for

the fermions. The ground state energy is then given by

& 1 dp
Ey=— du——1og (1+Y¢ 3.1.10
o= [ dug=os (14 70). (3110

where Y satisfies the (mirror) TBA equations
log Yy = log(l + YM+1)(1 + YM—I) * S — 5M70(LE + iTr), (3.1.11)

together with the Yjs~9. Note the added im in line with the periodicity of the fermions in

imaginary mirror time.

3.2 Tricks with analytic continuation

At this point we have actually done something quite impressive: we have found a system of
equations we can solve (admittedly numerically) to find the exact finite volume ground state
energy of a two dimensional field theory. It would be great if we could extend this approach
to the entire spectrum. If we look back at our arguments however, we are immediately

faced with a big conceptual problem; the mirror trick and infinite volume limit work nicely

Z>While widely used, the name mirror transformation is appropriate for the case we started with, as you
can readily convince yourself of by drawing a picture in the complex (o,7) plane. What does the second

transformation do?
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precisely for the ground state and the ground state only! Still it is hard to believe that a
set of complicated TBA equations knows about the ground state only, especially since they
are derived from the mirror Bethe-Yang equations which are just an analytic continuation
away from describing the complete large volume spectrum. In this section we will take an
approach often taken in physics; we will (try to) analytically continue from one part of a
problem to another, in this case from the ground state energy to excited state energies. The
idea that excited states can be obtained by analytic continuation is an old one, discussed in

e.g. [57] in the case of the quantum anharmonic oscillator.

3.2.1 A simple example

Before moving on, we would like to motivate these ideas and illustrate them on a simple

quantum mechanical problem?®

- (1 0 01
Hiy = By,  with H(O _1>+)\<1 0)' (3.2.1)

After considerable effort we realize that the spectrum in this model is given by
E\) =+V1+4 A2 (3.2.2)

and hence the ground state energy is —v/1 + A\2. Allowing ourselves to analytically continue
in the coupling constant we realize that the equation for the ground state energy has branch
points at A = +i. As a consequence, analytically continuing around either of these branch
points and coming back to the real line we do not quite get back the ground state energy,
but rather the energy of the excited state. This is illustrated in figure 8(a). The message we
can take away from this [58] is that by analytically continuing a parameter around a “closed
contour” — meaning we come back to the “same” value though not necessarily on the same
sheet — we end up back at the same problem although our eigenvalue may have changed.
As we are still dealing with the same problem, if the eigenvalue has changed under analytic
continuation it must have become one of the other eigenvalues. Note that this does not
imply all eigenvalues can be found this way — the spectrum may split into distinct sectors

closed under analytic continuation.

Let us now forget about the description of this problem in terms of linear algebra, and

suppose for the sake of the argument that in solving our spectral problem we had obtained

1
B = — /1 dz %f(z)g(z) Y (3.2.3)
where )
f(z) = Y)Y and g(z) =2\ 1 — 22, (3.2.4)

We can determine that this integral has branch points at A = £¢ without knowing anything
about f(z) other than that it is meromorphic with a single pole at i/A. Conceptually we

consider g(z) to be some nice known function, while f is not explicitly known. Analytically

26This nice example can be found in slides of a talk by P. Dorey at IGSTO08 [58].
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Figure 8: Analytic continuation. The left figure shows the analytic continuation of A (blue)
around the branch point at 4, corresponding to flipping the sign of —v/1 + A2 upon returning
to the real line. The right figure shows the corresponding movement of the pole at i/\
(blue) which drags the integration contour (red, dashed) in eqn. (3.2.3) along with itself for
continuity. Upon taking the integration contour back to the real line we retain a residual

contribution (yellow, dashed).

continuing the integral in A we get a function that is well defined everywhere except for the
half-lines ¢A > 1 and ¢A < —1 where the pole moves into the integration domain. Continuing
around the point A = ¢ as in figure 8(a), nothing happens when we first cross the line
Re(A) = 0 but when we cross the second time, the pole moves through the integration
contour on the real line and drags the contour along, as illustrated in figure 8(b). We can
rewrite the resulting contour integral in terms of the original one by picking up the residue,
giving

1
B\ = — /_ iz 2% F(2)g(2) + g(i/A) — 1. (3.2.5)

Since E¢(A\) — E(X) = g(i/\) # 0 there must be a branch point inside the contour. In this
integral picture we do not need to know the precise analytic expression of E or f to determine
the expression for the excited state energy. All we need to know is the pole structure of f

relative to the integration contour.

3.2.2 Analytic continuation of TBA equations

Inspired by this example, we can try to analytically continue our expression for the ground
state energy, eqn. (3.1.10), in some appropriate variable and see whether we encounter any
changes in the description. We could try continuing in the mass variable of the chiral Gross-
Neveu model for example. This approach to excited states in the TBA was proposed and
successfully applied to what is known as the scaling Lee-Yang model in [13]. The authors
there observed that in the process of analytic continuation the Y functions solving the TBA
equations undergo nontrivial monodromies. They moreover noted that changes in the form

of the TBA equations are possible if singular points of 1 4+ 1/Y move in the complex plane
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during the analytic continuation. These changes are analogous to the changes in the energy
formula of our example above. Here the integral is a typical term on the right hand side of
the TBA equations

y(u) = log (1 + ;) « K (u), (3.2.6)

where we recall that * denotes (right) convolution on the real line. If there is a singular
point
Y(u*) = -1, (3.2.7)

and its location u* crosses the real line during the analytic continuation, we can pick up the

residue just as in our simple example to get

1
y°(u) = log <1 + Y) * K(u) £+ log S(u*,u), (3.2.8)
where we recall that K(v,u) = %m.% log S(v,u) and the sign is positive for singular points

that cross the contour from below and negative for those that cross it from above. If Y
vanishes at a particular point, this leads to the same considerations, just resulting in an
opposite sign.?” If we wanted to do this at the level of the simplified equations, all we need

is the S-matrix associated to s:
™ .
S(u) = —tanh Z(u —1). (3.2.9)

The energy itself is also determined by an integral equation in the TBA approach, meaning
it can change explicitly as well as implicitly through the solution of a changed set of TBA
equations.

The upshot of this is that we obtain excited state TBA equations that differ from those of
the ground state by the addition of log S terms, which we will call driving terms. It should
not matter whether we consider this procedure at the level of the canonical equations or at
the level of the simplified equations, and indeed the results agree because of the S-matrix

analogue of identities like eqn. (2.5.8).

3.3 Excited states and the Y system

The case of the Y system is a bit more peculiar, since the distinguishing features of an excited
state completely disappear. This is because the S-matrix (3.2.9) vanishes under application
of s71. From this we see that whatever excited state TBA equations we obtain by the above
reasoning, the Y system equations are the same as those of the ground state: the Y system
is universal.?® The important distinction is that as we just said the Y functions for excited
states have singular points. If there are no further singularities like branch cuts (which we

would expect to be universal features of a model rather than state dependent), specifying the

2"The singular points of different Y functions in the complex plane are typically related. A driving term
arises from a special point u* for a Y function on the right hand side of a TBA equation. Since this term
typically has poles at u* + 4, however, this shifted point corresponds to a zero or pole for the Y function on

the left hand side. Analyzing the Y system (discussed just below) we arrive at the same conclusion.
*Exemptions to this rule can arise under very specific circumstances, see e.g. [59] and chapter seven of [41].
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number of simple poles and zeroes of all Y functions in the strip between ¢ and —i is almost
enough to ‘integrate’ the Y system back to the simplified TBA equations. First, however,
we need to address the fact that different physical models can have the same Y system. This
also brings us back to the discussion of information loss in the simplifying steps of section
2.5.

Asymptotics of Y functions

For concreteness, let us consider the simplified TBA equations (2.5.16) for the chiral Gross-
Neveu model. The distinguishing feature of these equations with respect to say the XXX
ones is the energy contribution to Yy. This term leads to log Yy ~ —e™2¥ /T at large |u],
meaning Yy goes to zero quite rapidly. If we take these asymptotics as given and assume
Yy is analytic in the strip between 7 and —i, for the time being interpreting Y; as some
given external function, we can ‘integrate’ the Y system equation YOJFYO_ = (1+Y7) to the

associated simplified TBA equation. Namely
Yp = e~ B/Telog14Y1)xs (3.3.1)

—E/T drops out of this), has the right asymptotics,

satisfies the Y system (note again that e
and is analytic, which by Liouville’s theorem means it is unique (the difference with any
other function with these properties is zero).

To get the simplified TBA equations for the remaining Y functions, which have no energy
terms, it turns out we should demand constant asymptotics Yy — Yy. These constants are
all recursively determined by one of them, e.g. Yi, by the constant limit of the Y system

(where Yy = 0 in line with its asymptotics), i.e.

}A/Z = ?12 - ]-a
N 2 (3.3.2)
YN+1:7AN—1, N > 1.
1+Yna

A simple solution to this set of equations is Yy = M (M + 2), essentially due to the identity
M? = (M +1)(M — 1) + 1. We can generalize this solution to

~

Yu = [M]y[M + 2|, (3.3.3)

where we introduced the so-called ¢ numbers

M —qgM

M), = ,
(Mg == — =

(3.3.4)
which retain the property [M]2 = [M + 1]4[M — 1], 4 1 for any ¢ € C. In the limit ¢ —
1, [N]; = N again. Since everything is recursively fixed by Y, = [3]¢ and by picking ¢
appropriately we can make [3], any complex constant, this is the general constant solution
of our Y system. Given a value of Vi and hence all Yy, the expression for the associated full
Y functions as the right hand sides of their TBA equations follows uniquely from analyticity
and the Y system as it did for Y.
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To fix the constant asymptotic of Y7 we can feed our constant “solution” in to the canonical
TBA equations, where now integration with the kernels amounts to multiplication by their
normalizations. Then performing the infinite sums in the canonical TBA equations we get
a set of equations that admits only one value for Yi. In our chiral Gross-Neveu case this
fixes the asymptotes of Yys~o to be M (M + 2). If we had included a nontrivial chemical
potential p for the spin down fermions in a thermodynamic picture, or cf. footnote 24 double
Wick rotated quasi-periodic boundary conditions, we would instead be required to take a
different constant ¢ number solution with logq ~ u, showing the physical interpretation
of these constant asymptotics.?? This link between chemical potentials and asymptotics
actually allows us to move between canonical TBA equations and simplified equations plus
(constant) asymptotics.

As mentioned earlier, the XXX spin chain has the same Y system, but different (simplified)
TBA equations. These simplified TBA equations would follow along the same lines, but with
different asymptotics. Similarly, the im contribution in eqs. (3.1.11) affects the asymptotics
relative to egs. (2.5.16).

Poles and zeroes of Y functions

Now that we have seen how to get basic simplified TBA equations from a Y system, let us
try to add driving terms. To do so, we need to know the simple poles and zeroes of the Y
functions. Provided we are given this data, we can explicitly factor out poles and zeroes of
Y via products of ¢(u) = tanh Ju and 1/t. In other words for a Y function with poles at ¢;

and zeroes at x; we define

- . Hjt(u_Xj)

Y(u)==—-Y(u), 3.3.5

W M) (3:3:)

which is analytic. We now start from the schematic Y system YTY~ = R, which implies
also YTY~ = R because t Tt~ = 1. Morever, since Y is analytic and has the same asymptote

as Y because t(u) asymptotes to one, we are essentially in the situation we had above (the

relation of t(u) to S(u) of eqn. (3.2.9) is not accidental). By our previous analysis we get
Y = elogRxs, (3.3.6)

so that
Yy — Hz t(u - fz) elogR*s (3 3 7)
[, t(u = x;) ’ -

E/T a5 before if necessary. This is precisely of the form of a

where we should include e~
simplified excited state TBA equation. To reiterate, this formula by definition gives the Y

1 and has the right poles, zeroes, and asymptotics, making it our

system upon applying s~
unique desired answer. For more complicated TBA equations with branch cuts we would
need to know the discontinuities of the Y functions across the cuts, in addition to poles,

zeroes and asymptotics, but morally we would do the same thing.

2 More details can be found in e.g. chapters 2 and 4, and appendix A.4 of [41]. In particular, evaluating

the infinite sums actually requires an ie prescription in case of nonzero chemical potential.
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In short, by supplying analyticity data in the form of poles, zeroes, and asymptotics, we
can derive a set of integral equations of simplified TBA form, with precisely the expected
type of energy and driving terms. Some form of integral equations is of course useful, as they
can typically be iteratively solved, perhaps by starting from a seed solution in some part of
parameter space (an asymptotic solution), which should in particular include appropriate
starting values for the zeroes and poles. The notion that analytic properties might “label”
excited states also appears in e.g. the discussion of the “Bethe ansatz” for the harmonic
oscillator in the article by F. Levkovich-Maslyuk [40].

The Y system and its universality are closely related to other approaches of obtaining
equations that describe excited state energies. In some cases it is possible to construct a
functional analogue of the Y system directly, as discussed in the article by S. Negro [16]. If
we can then get satisfactory insight into the analytic structure of the corresponding objects,
we can ‘integrate’ these functional relations in the above spirit to obtain integral equations
describing the energy of excited states [60,61,14,62]. Depending on how these functional
equations are ‘integrated’ we can obtain equations of TBA form but also various other forms
that can be more computationally efficient. The latter equations generically go under the
name of “non-linear integral equations” [60], but depending on the context are also called
“Kliimper-Pearce” [63,64,60,65] or “Destri-de Vega” [66,67] equations. While not obvious
from their form, when different types of equations are possible they should of course be
equivalent [68,69].

3.4 Lischer formulae

In general, we may wish to use an amalgamation of the above ideas to find excited state
TBA equations, in the form of something which we will refer to as the contour deformation
trick. The basic idea goes as follows. We will find a candidate solution of the Y system for an
excited state with some limited regime of applicability. We then assume that the form of the
TBA equations for an excited state is uniform and does not change outside of the regime of
applicability of our candidate solution. Next, drawing lessons from the analytic continuation
story above we expect that the only changes in the equation should be the addition of possible
driving terms. Furthermore, although our limited solution only gives us a static picture,
we expect that we can qualitatively view these terms as if coming from singular points that
crossed the integration contour. Since in this picture such singular points would have dragged
the contour along with them, we expect that an excited state TBA equation should be of the
same form as the ground state, except with modified integration contours. Analyzing the
analytic structure of the candidate solution will allow us to consistently define these contours
in such a way that the TBA equations are satisfied, and by taking the integration contours
back to the real line we can explicitly pick up the corresponding driving terms. Coming back
to our simple example, it would be as if internal consistency of the problem (perhaps in the
form of some other equation) told us that the natural integration contour for the excited
state was not the interval (—1,1), but a contour that starts at one and finishes at minus one

while enclosing i/ between itself and the real line. Such a contour is of course equivalent
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to the red contour in figure 8(b) obtained by direct analytic continuation.

Through a bit of physical reasoning we can obtain a candidate solution of the TBA equa-
tions that should describe an excited state. If we take our theory at face value as a field
theory on a cylinder, it is natural to expect the energy of states to get corrections from
virtual particles travelling around the circle, a phenomenon investigated in particular by
Liischer [70]. Concretely, Liischer showed how polarization effects lead to mass corrections
for a standing particle in massive quantum field theory in a periodic box, computing their

mL where m is the mass of the particle and L the size of the

effect to leading order in e~
periodic box [70]. These (leading order) corrections come in two types illustrated in figure 9.
The first of these is the so-called p term corresponding to the particle decaying into a pair of
virtual particle which move around the circle (in two dimensions) and recombine, while the
second is the F-term which corresponds to a virtual particle loop around the circle which

involves scattering with the physical particle.

B O

\
F==---
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D

Figure 9: The Liischer u- and F-term. On the left we have the decay of a physical particle
(blue) into a pair of virtual particles (green) which fuse to a physical particle on the other
side of the cylinder, while the right shows the scattering of a virtual particle with the physical

particle as it loops around the cylinder.

Generalizing these ideas to moving particles and interacting multi-particle states based on
the original diagrammatic methods of [70] seems daunting. In the context of simple rela-
tivistic integrable models, however, Liischer’s formulae readily follow by explicitly expanding
the TBA equations in the large volume limit. By carefully generalizing the expansions in
such models to interacting multi-particle states we can try to obtain a type of generalized

Liischer’s formulae. To leading order this energy correction takes the form [71]
o dp _EL -
AE==3 [ e aul{n)), (3.4.1)
Q /e o

where we have indicated double Wick rotated (mirror) quantities by a tilde to show their
origin, though the distinction will not matter for us here. This is the multi-particle general-
ization of the contribution corresponding to the F term on the right side of figure 9. In many
integrable models the p term does not appear to show up at leading order for most states.

In this formula, Ag 1(p|{p;}) denotes the eigenvalue of the transfer matrix for the state of

35



the integrable model under consideration, with its auxiliary space taken to be the mirror
(double Wick rotated) representation for a mirror particle of type Q. In other words, the
energy shift is given by scatter any possible virtual particle? with the physical excitations

of our large volume state, and summing over all of them, weighed by e €%,

Now we argued above that the excited state TBA equations should differ from the ground
state ones by a set of driving terms, but should otherwise be of the exact same form. Consid-
ering the energy formula (3.1.10) in this light, we realize that at large mass or large volume
the Yy function should be small due to the —LE = —mLcosh mu/2 term in their canoni-
cal TBA equations. Expanding the energy formula for small Yy and comparing this to the
leading weak coupling correction (3.4.1), where for the chiral Gross-Neveu model there is no
sum over () since there are no physical bound states, for an excited state described by a set
of rapidities {u;} it is natural to identify

Ny
Yy (@) = e POETT S (i, wi) Mal{ui}), (3.4.2)

i=1
where the tilde is a label to indicate that the associated quantities are to be evaluated in
the mirror theory, and A refers to the XXX spin chain transfer matrix eigenvalue without
the scalar factor S/, which we hence have to reinstate to describe our chiral Gross-Neveu
model. The superscript o indicates that this is an asymptotic solution that only applies
to leading order in e #%. One immediate promising feature of this formula is that if we
analytically continue this function from the mirror theory to the physical theory we are
interested in, this precisely looks like the right hand side of the Bethe equations, and we get

that asymptotically

Yo (uy) = —1, (3.4.3)

the * denoting that we have analytically continued. This precisely corresponds the kind
of singular point we encountered in our general discussion around eqn. (3.2.7)! In fact,
assigning appropriate driving terms to these singular points precisely results in an energy
formula of the form

Ny
1 dp
E = Ep)— [ du——log(1+Yp), 4.4
> B [ usProg 14 70) (3.4.4

where F(p;) is the asymptotic energy of the ith particle (recall that p evaluated on an
analytically continued rapidity is just —iE). Of course there can be further modifications to
this energy formula depending on possible further singular points of Yj, see for instance [72]
for a situation with rather involved analytic properties. Actually, the auxiliary equations
could change as well, leading us to wonder what asymptotic solution we should consider there.
Not going into technical details, we hope the following sounds reasonable. The auxiliary Yg
functions are physically associated to the Bethe-string solutions of the XXX spin chain (with
inhomogeneities), which as we discussed are bound states, and their S-matrices can be found
by fusion. We could construct transfer matrices based on each of the bound state S-matrices

labeled by the string length P, and find their eigenvalues. By construction these objects will

30 At least pictorially it is clear that a virtual particle is like a regularly propagating mirror particle.
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satisfy a relation similar to, but slightly more complicated than the one for the diagonalized
scattering amplitudes of eqn. (2.5.1), and by using these relations one can consistently
express the Yp~g in terms of these bound state transfer matrix eigenvalues. This then gives
us a full asymptotic solution, and we can analyze its analytic properties to find excited state

TBA equations whose solution we can extend beyond the asymptotic regime.

3.5 Y/T/Q@Q-system and nonlinear integral equations

The structure of fusion relations between bound state transfer matrix eigenvalues actually
relates nicely to a structure that is known as the T system, a system encountered in S. Negro’s
article [16] in a particular model. Let us go over the basic story, avoiding formulas. The T
system is a set of equations known as Hirota equations for a set of T functions, functions
of the rapidity (momentum) defined on a grid with a border one wider than the Y system
on all sides. The identification between the Ys and the Ts admits gauge transformations on
the Ts, but in an appropriate gauge the asymptotic Y functions are expressed in terms of
asymptotic T functions, for which the (asymptotic) T system becomes precisely equivalent to
the fusion relations of the transfer matrix eigenvalues. The T system is a generic rewriting
of the Y system however, which applies beyond the asymptotic limit. Its gauge freedom
actually proves useful, as one can (try to) shift the analytic properties of the Y functions
that we require from the TBA, between the various T functions. Doing so appropriately,
we can represent the (typically infinite set of) T functions in terms of a set of much simpler
elementary functions known as Q functions with transparent analytic properties. Turning
the resulting algebraic equations plus analyticity constraints back into integral equations for
these “fundamental” variables gives a set of nonlinear integral equations for a finite number of
functions, of the general Kliimper-Pearce-Destri-de Vega type mentioned above. This hence
provides a means of rewriting the TBA equations in a simpler form in these more complicated
cases with infinitely many Y functions. In the context of integrability in AdS/CFT these
equations are known as the quantum spectral curve [29]. S. Negro’s article [16] discusses
that deriving such Y, T, or Q systems and their analytic properties from first principles is
possible in particular models. While a highly involved problem, doing so in a particular
model would provide a great check on the chain of reasoning involved in the TBA approach
(for excited states in models with bound states). For the AdS5 x S° string first steps in this

direction were made in [73].

4 Conclusion

The thermodynamic Bethe ansatz is an important technical tool with applications ranging
from (but not limited to) describing the thermodynamic properties of one dimensional spin
chains to computing the spectra of integrable field theories on a cylinder. In this article
we provided an introduction to the basic ideas behind this method, and applied them in
a number of illustrative and representative examples. We started from the simplest Bethe

ansatz integrable model — free electrons — where we introduced the thermodynamic limit
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and the concept of density of states and holes and their relation via momentum quantization
conditions. The stationarity of the free energy in thermodynamic equilibrium resulted in
a simple algebraic equation, whose solution gave the famous Fermi-Dirac distribution. We
then applied the same ideas with the free particle momentum quantization condition replaced
by more complicated Bethe(-Yang) equations, to describe the thermodynamics of the Bose
gas, XXX spin chain, and chiral Gross-Neveu model. These latter two models required us to
introduce a string hypothesis describing the possible solutions of the Bethe equations in the
thermodynamic limit. The stationarity condition now results in one or or an infinite number
of coupled integral equations — the TBA equations — for the Bose gas, and XXX spin chain
and chiral Gross-Neveu model respectively. We discussed how such infinite sets of TBA
equations can be simplified and ultimately reduced to a Y system together with analyticity
data, including technical details on integration kernel relations presented in an appendix.
We then moved on to using the same ideas to describe the ground state energy of integrable
field theories in finite volume via the mirror trick of interchanging space and time, and how
these ideas can be adapted and applied to excited states. The Y system structure is the same
for all such excited states, and we discussed the analyticity data required to link a Y system
to a given model and within that to a given state. We also briefly discussed the basics of and
some tips on numerically solving TBA equations. The conceptual background we discussed
and applied to our concrete examples make up the essence of the TBA approach, and as

such can be applied to (m)any other integrable model(s).
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A Integral identities

In eqn. (2.5.8) of section 2.5, we claimed that the kernels KM satisfy

KPQ — (KPR 1 KPRy s = s Ipg. (A1)
We also made claims regarding K79 = K9/ namely

K/Q — (KJQH 4 KIQ71) 55 = 550,. (A.2)
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We can prove these by Fourier transform. We begin by noting that similarly to the fused
XXX momentum of eqn. (2.3.15),
u—+iQ
u—iQ’
Note that S = 1/Sf2, but that we defined the kernels with opposite sign, so K = K72,
Now the Fourier transform of Kf@ (Q > 1) is

K7Qu) = —Lilogle(u) 1@ (A.3)

fQ — ——_ %
57 (w) 27i du T Q2+ u2’

K@) = / due™ K19 (y) = ¢ M@, (A.4)

—00

while
1

S(k) = .
(k) 2 cosh k
In Fourier space, identity (A.2) is now simply an equality between functions. The identity

(A.5)

for KM similarly follows by its definition as a sum over string states (K/0 = 0)

EMwy= Y E'= Y K7 (A.6)

strings strings
Q-1
= K/ @+M) () 4 KIM=Q) () 4 2 Z Kr—goi(u) (A.7)
i=1
min(M,Q)-1
= KO () 4 kIO ) 42 Y™ Kjy_gprai(u) (A.8)

i=1
which we get by combining appropriately shifted numerators and denominators in the prod-

uct of S matrices underlying these kernels. Its Fourier transform, cf. eqn. (A.4), is
KO = 7 RIX = coth [k] <e—\Q—MHk| _ 6—(Q+M)|k|> — So.M (A.9)

from which eqn. (A.1) follows.

B Numerically solving TBA equations

We mentioned in 2.2 that we can numerically solve TBA equations by iterations. Let us

consider the general form of a TBA equation

1
logY; = log <1 + > * Ky + aj, (B.1)

Yi
where the a denote a set of driving terms, including for instance the energy term in eqn.
(2.2.20). To solve these equations by iterations, we start with some guess for the Y function(s)

as a seed — the Yj(o) — and use these initial functions to compute the right hand side of the

TBA equations. We then use this to define the updated Yju), or more generally

n+1 1
log Yj( ) = log (1 + Y(n)> * K + aj. (B.2)
k
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In practice we hope these iterations converge to a stable solution.3! Of course, the trick lies

in the technical implementation of this basic concept, which is a bit of an art.

First, a good guess for the initial Y functions will at the very least speed up the process. If
we wanted to solve the Bose gas equations (2.2.20), for instance, in a low temperature regime
a good guess would be €9 (p) = E(p). Second, depending on the details of the equations
and kernels, nothing guarantees that eqn. (B.2) will converge fastest. For instance, it may

be advantageous to consider

log Yj("+1) =z <log (1 + }jn)> * Ky + aj> + (1 —2)log Yj(”), (B.3)
k

for some 0 < & <1, cf. e.g. section 2 of [13]. This is mostly useful if we need to run similar
equations many times, since finding a suitable value for x through experimentation takes
time as well. Third, the convolution computations can typically be sped up by means of
(fast) Fourier transform (FT), i.e. we compute the convolution fxg as FT™L(FT(f)FT(g)).3?
Alternatively we could try to solve the equations in Fourier space directly, for example by
using a multidimensional version of Newton’s method at a discrete set of values in the Fourier
variable. It may in fact be useful to use Newton’s method when iterating in whatever form,
see e.g. [75]: rather than updating as YJ\(}LH) = Y]\(/?) + AE\Z), where AS\Z) denotes the error of
the solution at iteration n, we could update in the direction of greatest linear improvement,
ie. as YA(;H) = Y]\(;) + 51(\;) where {1(\;) solves (007 — 8RHSM(Y(”))/8YN)§](\7) = AS\Z) and
RHS /(Y ™) denotes the right hand side of the TBA equations at iteration 7.

Regarding the technical implementation of these convolutions and sums, on a computer
we cannot work with infinitely many Y functions or integrals over the whole real line. This
means that in case of infinitely many Y functions we will have to cut them off at some
point, and in any case the integrals will need to be done through some discretized finite
interval. Regarding this first point, typically the Y functions for bound states fluctuate less
and give smaller contributions to the free energy as the bound state size grows. Consider
for instance the constant asymptotics of Yo ~ Q(Q + 2) that we mentioned in section 3.3,
meaning that log(1 + 1/Yg) decreases with @, unless its relative fluctuations grow in @,
which would be odd. So for practical numerical purposes it may suffice to keep only e.g. the
first ten Y functions, unless self-consistency checks based on these first ten indicate that the
contributions of higher Y functions are not negligible with regard to the desired accuracy.
Importantly, we should not simply drop the other Y functions altogether, but rather add for
instance the contribution of their constant asymptotics. This brings us to the second point,
integrating over a finite interval. Since we need to cut off the integration domain in some
fashion, we need to take care of the asymptotics anyway: cutting the integration domain off
at a fixed value means we will introduce a boundary error of order of the asymptotic value

at the extrema of the external parameter in the convolution.®® To reduce this error to an

31n the case of the free energy for the Bose gas this can be explicitly shown [4], but let us simply assume
this is ok in general at least as long as we do not choose our initial Y functions too poorly.

32There are nice exercises with solutions illustrating this as part of the 2012 edition of the Mathematica
summer school on theoretical physics available on the web [74].

33K (u — v) with u ~ v is of order K (0) which is a relevant scale.
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acceptable value we can subtract the equation satisfied by the constant asymptotics, i.e. we

solve

1 1
logY; =log A; + log <1+> /<1+> * Kij + aj, (B.4)
Y. Ay

where A; denotes the asymptote of Y;, which here we assumed to solve the TBA equations
with a; = 0. If there are constant nonzero asymptotics in the game, subtracting them
is also essential if we wish to Fourier transform. Nonzero constants Fourier transform to
delta functions which cannot be reliably implemented numerically. Put differently, functions
with constant nonzero asymptotics are not square integrable on the line, so cannot be Fourier
transformed in the traditional sense. If we subtract the asymptotics, however, we can readily
Fourier transform the fluctuations of interest.

The discussion in this appendix applies equally well to simplified TBA equations — noth-
ing referred to the canonical form of eqn. (B.2) — which importantly are typically faster
for numerical purposes as they do not involve infinite (large) sums, but nearest neighbour
couplings instead. As discussed we need to be careful about the asymptotics we subtract: in
contrast to the canonical equations there are many constant solutions of the basic simplified

TBA equations, and we have to choose the one appropriate for our physical situation.
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Abstract

This review was born as notes for a lecture given at the YRIS school on integrability in Durham, in the summer of 2015. It
deals with a beautiful method, developed in the mid-nineties by VV. Bazhanov, S.L. Lukyanov and A.B. Zamolodchikov and, as
such, called BLZ. This method can be interpreted as a field theory version of the quantum inverse scattering (QIS), also known
as algebraic Bethe ansatz (ABA). Starting with the case of conformal field theories (CFT) we show how to build the field theory
analogues of commuting transfer 1" matrices and Baxter Q-operators of integrable lattice models. These objects contain the
complete information of the integrable structure of the theory, viz. the integrals of motion, and can be used, as we will show,
to derive the thermodynamic Bethe ansatz (TBA) and non-linear integral (NLIE) equations. This same method can be easily
extended to the description of integrable structures of certain particular massive deformations of CFTs; these, in turn, can be
described as quantum group reductions of the quantum sine-Gordon model and it is an easy step to include this last theory in
the framework of BLZ approach. Finally we show an interesting and surprising connection of the BLZ structures with classical
objects emerging from the study of classical integrable models via the inverse scattering transform method. This connection goes
under the name of ODE/IM correspondence and we will present it for the specific case of quantum sine-Gordon model only.
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1 Introduction

The history of Integrable Systems is as old as that of Classical Mechanics and the two were, for the largest part
of 18th century, more or less coinciding. Following the formulation of Isaac Newton's laws of motion, for more than
a century, eminent mathematicians and physicists such as J. B. d’Alembert, L. Euler, J. L. Lagrange, C. G. J. Jacobt
and sir W. R Hamilton devoted many works to the problem of finding exact solutions to Newton's equations. These
efforts brought about a striking amount of results, which condensed in the theory of Lagrangian mechanics first and
that of Hamiltonian mechanics then, culminating in the first definition of integrability, as given by J. E. E. Bour
and J. Liouville. Although the discovery of many new integrable systems quickly followed, by the end of the 19th
century a fundamental result of J. H. Poincaré doused the excitement of the mathematical and physical community,
effectively deeming the integrable systems as exceptions amongst the Hamiltonian ones. From that moment the
theory of integrable system laid more or less dormant until the second half of the '60, when the idea of integrability
resurfaced thanks to the efforts of C. S. Gardner, J. M. Greene, M. D. Kruskal, R. Muura, P. D. Lax, L. D. Faddeev, V.
E. Zakharov and many other. From that pivotal half-decade, the theory of integrable systems beqgun growing more
and more, incorporating results obtained in other branches of theoretical physics, first and foremost Bethe's method
for the study of quantum spin chains as well as Baxter's approach to 2D statistical lattice models. The number of
publications devoted to the study of integrability grew steadily, especially after the introduction of Conformal Field
Theories by A. A. Belavin, A. M. Polyakov and A. B. Zamolodchikov and the “first superstring revolution”. Finally a
last breakthrough came just before the end of the century, thanks to J. Maldacena: the ‘AdS-CFT" correspondence.
This discovery “opened the floodgates” (to borrow the words of Polyakov) and stimulated an impressive amount of
work, especially in the field of integrable models.

As the title explicitly reveals, this review deals with the analysis of the integrable structures in field theories.
What is meant with this denomination are not simply the fundamental objects that are seen appearing in all integrable
theories: the integrals of motion and their “generating functions’, the T" and @ operators. The expression “integrable
structures” encompasses the whole algebraic skeleton which allows for the building of integrability to stand. The
study of integrable structures in field theory was first exhaustively addressed to by VV. Bazhanov, S.L. Lukyanov and
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A.B. Zamolodchikov in a remarkable series of papers [1, 2, 3, 4] and the goal of these 50 odd pages is essentially to
go through their work and present it in a uniform and coherent way, providing details and insights in the definitions
that we hope will help the reader to understand this beautiful approach. It is, nonetheless, impossible to include in
a single review all the implications of the method introduced by Bazhanov, Lukyanov and Zamolodchikov (hereafter
addressed to as the BLZ method), as his connections with the theory of quantum integrable systems and CFTs are
deep and widespread. For this reason we included a list of references which will be addressed to in the text when
a certain topic will be simply cited.

Given the length and the complexity of the subject we decided to keep the main body of the notes as clean as
possible by separating heavier calculations and in-depth analyses, not strictly essential to the progression of the
review, to boxed sections. These “in-depth boxes” are interleaved with the main body and the reader can, depending
on its necessities and the level of its knowledge, skip them without missing anything fundamental about the method.
We believe, however, that they can be extremely useful in getting a deeper understanding of the subject and of its
many relations to other topics of integrability.

We would like to address a final word of caution to students and young researchers first approaching this
subject: do not feel discouraged if you cannot grasp every aspect presented here. The BLZ method requires the
use of diverse advanced mathematical concepts and the computations sketched here are often very technical and
demanding; insisting on understanding everything at a first reading would be foolish. Instead we suggest multiple
readings so that, at each step, it would be possible to go through the concepts, references and calculations in more
and more detail. We especially suggest the readers willing to spend time learning this method to go, at some point,
through the computations outlined here as this will often force them to explore the references and think about the
very meaning of the objects into play: the reward will surely be a deeper and broader understanding of the concepts
exposed here.

This review is organised as follows. In the first section, after a brief review of Conformal Field Theories (CFTs)
and of classical KdV hierarchy, we will begin building the integrability objects for the ¢ < 1 CFTs from scratch.
We first introduce the quantum transfer matrices T; and show how they can be interpreted as sort of generating
functions for the quantum integrals of motion. We will then broaden our view, generalising the algebraic setting and
constructing the Baxter operators Q. While doing so we will also show how these objects can be used to derive the
useful TBA, Bethe Ansatz and NLIE equations, making a connection to the other reviews in this volume. Following
this will be a section devoted to the extension of the previous results to the massive integrable deformations of
CFTs. This section contains a brief account on the theory of integrable CFT deformations which can be skipped
by the readers already familiar with the concept. Finally, in the last section we present a completely different
yet, we believe, really interesting approach to the construction of the integrable structures in the particular case
of sine-Gordon model. This method, bearing the name ODE/IM correspondence, reveal an intimate and still poorly
understood connection between the theory of classical and quantum integrable models. Finally, given the large
number of parameters appearing in this review, we thought it would be useful to collect the most relevant ones and
the relationship amongst them here, in Table 1.

2 Integrable Structures of Conformal Field Theory

The 2D CFTs are the perfect and probably best known example of exactly solvable quantum field theories. From
the year 1984, when the concept of CFT was first introduced in an article of AA. Belavin, AM. Polyakov and
A.B. Zamolodchikov [6], up to our days they received a great deal of attention and most of their features are now
known, to the point of making them a self-contained theory which is very often subject of advanced courses in
theoretical physics. The usual approach of these courses concerns what we might call a representation-theoretical
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characterisation of CFTs, that is to say a description and classification of their spectrum in terms of modules over
the Virasoro algebra (or one of its extensions). This point of view, which employs a wide array of mathematical
concepts, ranging from representation of infinite-dimensional algebras to number theory, has the advantage of being
extremely neat and crystalline clear; however the concepts directly related to integrability as we know them from
classical and lattice models, such as integrals of motion, Bethe ansatz equations and so on, do not seem to play a
primary role and remain hidden somewhere inside this elegant construction. Such is its power that the legitimate
question whether there is actually any need to address to the integrable structures in CFTs arises. Anyhow, this
“conventional” point of view is limited to CFTs only and, when dealing with, for example, their deformations one
would like methods closer to those employed in their lattice reqularisation, or in their classical limits, to be available.
Looking in this direction, there exists an alternative approach to CFTs, pioneered by AlLB.Zamolodchikov [7], where
the spectrum is described in terms of scattering states of a set of massless particles'. The fundamental object in this
context is the factorisable massless S-matrix. This approach is closer to the integrable structures, viz. it is closer
to a separated variables description. The aim of this first part is to describe this integrable structure of CFT by
building the “fundamental objects”: the operators T; and Q4. These can be interpreted as the continuum analogues
of commuting transfer matrices and Baxter operators of integrable lattice models and, in fact, it is wise to keep in
mind this parallel with lattice models, in order to understand the origin and meaning of most formulae.

2.1 Brief overview of CFT basic concepts

The goal of the following section is to recall the basics of 2D CFT and to set up the notation, without any pretense
of completeness. It is intended for readers having already a good knowledge of the subject; for those who are less
familiar with it, there exists a plethora of, often very good, reviews and books dealing with 2D CFT, offering a wide
range of different points of view. | suggest [8] for a straightforward introduction and the references therein for a
more in-depth study; the most daring might consider the “Big Yellow Book” by P. Dt Francesco, P. Mathieu and D.
Sénéchal [9].

The Virasoro algebra A Conformal Field Theory (CFT) in D Euclidean dimensions, that is a local, isotropic field
theory possessing no characteristic length scale, is invariant under the global conformal group SO(D + 1,1), a
non-compact Lie group of dimension (D + 1)(D + 2). Although bigger than the Calilei group RP x SO(D),
whose dimension is %D(D—i— 1), it is still not sufficient to grant integrability to the CFT: we need an infinite number
of symmetries to perform this task’ and that is exactly what we find if we look at the particular case D = 2. In
fact when we consider the conformal transformations of a plane, even if the special orthogonal group SO(3,1) has
dimension 6, we can find an infinite number of conformal coordinate transformations: the holomorphic mappings
from the complex plane (or part of it) onto itself. This discrepancy between the finiteness of the conformal group
and the infinite amount of independent conformal coordinate transformations is easily resolved by remarking that
most of these last are not globally well-defined. The set of infinitesimal conformal transformations form an infinite

dimensional local algebra, the renowned Virasoro algebra® Vir, which exponentiate to the Virasoro group diffST
(the centrally extended group of diffeomorphisms of the unit circle) [10, 11]. This last contains, as a subgroup, the
Mébius group SL(2,C)/Zy ~ SO(3,1) of global conformal transformations. Since a local field theory should
be sensitive to local symmetries, even if the related transformations are not globally defined, the behaviour of a
(14 1)-dimensional is indeed constrained by the full algebra V'ir. It is precisely the local conformal invariance that,
being infinite-dimensional, allows for exact solutions of 2D CFTs to exist. The Virasoro algebra Viris generated by

the operators { Ly}, <y , obeying the famous commutation relations

c

2 —
12n(n 1)0n,—m »

[Lyy, Lin) = (n—m) Ly +

T Note that this characterisation is not unique! One can choose different massless particle bases of the Hilbert space, with different particle
content and different scattering amplitudes. These different choices reflect the possibility of reaching a certain CFT as massless limit of different
massive field theories.

2 The intuitive reason for that comes from Liouville's definition of an integrable system. This states that a system is integrable iff it possesses
the same number of conserved quantities and degrees of freedom. By Nother theorem conserved charges correspond to symmetries and so we
need a set of symmetries having dimension equal to the degrees of freedom of our system. But a field theory has “infinite degrees of freedom”!
Hence we need an infinite number of symmetries to make it integrable.

3 Actually the algebra of infinitesimal conformal mappings is the Witt algebra. However in the quantum theory this symmetry is anomalous
and the Witt algebra gets extended to Vir by the addition of a central charge ¢, also called conformal anomaly.
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Fig. 2.1: Map from the cylinder (z,y) to the complex z-plane.

where ¢ is a number called central charge or conformal anomaly.

Let us now consider a CFT on a flat Euclidean plane, having coordinates (z,y). The presence of scale invariance
means that we are dealing with massless theories. Were we considering a Minkowski geometry (2, «!), it would
be then natural to describe the system using light-cone coordinates (x*,27) = (2 +2Y, 2* —2), so that left/right-
moving massless fields depend uniquely on, respectively, ¥ or ™. Here, in the same spirit, it turns out to be
extremely useful to introduce the complex coordinates (w, W) = (z + iy, x — iy) and the notion of left/right-moving
fields turns into that of purely holomorphic/anttholomorphic Euclidean fields. The algebra of symmetries of a CFT
will thus be the direct sum of two Virasoro algebras: Vir@ Vir. From now on we will consider the complex coordinates
w and w to be independent, so that Vir @ Vir naturally acts on C? and we can treat each term in the direct sum
independently and effectively work only with holomorphic fields. When the time comes to compute physical quantities
we will “remember” to add the anttholomorphic contributions and impose the “real slice” condition w = w*.

Since we are dealing with massless fields, we must pay attention to infrared divergencies. For this reason we
invest one of the dimensions, say y, with the role of spatial dimension and compactify it on a unit circle: y+2r = y.
This procedure defines our theory on a cylinder R x S*. Next we can perform the following conformal map

w— z=e¥ =Y

which “squashes” the cylinder on the z-complex plane as shown pictorially in Figure 2.1. It is easy to see that the
“time” direction x is mapped in the radial one p = v/2Z, while the "space” direction ¥ is sent in the angular one
¢ = 3 1log (£). The infinite past and infinite future = 400 are sent to the points 0 and oo, respectively, of the
z-plane. The usual procedure of quantisation in this setup is called radial quantisation.

The subalgebra of Virx Vir generated by {Li,fi};:_l is associated with the global conformal group SL(2, C)/ZQ
and is anomaly free. It is useful for characterising physical states. In fact suppose that we are working, as we will,
with eigenstates of the operators Lo and Lo and denote the eigenvalues, called conformal weights, as h and h.
Consider the following two particular operators of S’L(2,(C)/Z2:

e Lo+ Lo: on the cylinder it generates the translations along the time direction and gets mapped, on the plane,
to the generator of dilatations (z,Z) — v(z,%). In radial quantisation, it corresponds to the Hamiltonian of
the system;

e i(Lo — Lo): on the cylinder it generates the translations along the space direction and gets mapped, on
the plane, to the generator of rotations (z,%Z) — (e'*z,e7'Z). In radial quantisation, it corresponds to the
momentum of the system.
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The eigenvalues of these two operators are the scaling dimension A = h -+ h and the conformal spin s = h — h. In
the context of radial quantisation they correspond to the energy and the momentum of the state.

The energy-momentum tensor The energy-momentum tensor T#" is defined as the conserved current associated
to the invariance of the system with respect to coordinate transformations e, (x):

bt = 5 [ T () Oenle) + Do)

where &7 is the action of the system. The energy-momentum tensor is symmetric in its indices T*¥ = T"# and
for a CFT it is traceless T, = 0 (this is actually valid in any dimension D). If D = 2, then, we only have one
component for each chirality:
Tplane(z) = —27T** ) Tplane(z) = _27TTEE .
These two components are the generating functions of the Virasoro generators
Tplane(z) - Z Z_n_2Ln 5 Tplane(z) - Zz_n_2zn ’

ne”z nez

which, in turn, can be expressed in terms of T' by means of Cauchy theorem:

1 _ 1 _
L,=— yg dz 2" Thane(2) Ly==—Qdzz" " Tpiane(2) .

2i 2i

0 0

These formulae allow to build the energy-momentum tensor also for those CFT who do not possess an action (or
if that action is not known). In the following we will be considering CFTs defined on the cylinder and is useful to
have an expression of the energy-momentum tensor in this geometry:
c inw T(77) — _i —inw
T(w)_—ﬂ+ze L_,, Tw)= 24+Ze L_,.
nez nez
The corresponding expressions of the Virasoro generators take the form
2m 2
1 - — 1
L,=— [ dwe™T(w), L,=—
we (w) 5
0

dw e " T (W) .

(=)

It is useful to remark here that on the cylinder T'(w + 27) = T'(w) and T'(w + 27) = T(w).

Primary fields Let us consider a transformation of coordinates (z,%z) — (w(z),w(z)); any field in our CFT which
transforms as follows

oni29 = 0030 = (L) (E) e,

is named primary field, while the quantities i and A are the holomorphic and anti-holomorphic conformal weights
introduced above. All the fields which are not primary will be called descendants. The energy-momentum tensor is
an example of a particular descendant field, called quasi-primary as it transforms as a primary only under global
conformal transformations:

dw

_h c
T(z) = T'(w(z)) = (dz) T(z)+ D {z;w(2)},

where {z;w(z)} is the Schwartzian derivative of w(z), which vanishes iff w € SL(2,C)/Z,. A consequence of the
form of primary fields and energy-momentum tensor is the particular operator product expansion (OPE) that they
satisfy:

s h s T

1
T(2)pn5(2,7) ~ msﬁh,ﬁ(z Z) + maz’s%ﬁ(z Z),

e C_/if>4 )+ AT
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Hilbert space  The Hilbert space 4%, of our CFT is built on some vacuum state | 0 ), which must be invariant under
SL(2,C)/Zs and satisfy
L,|0)=0, L,|0)=0, VYn>-1,

which is a consequence of the request that 7'(z)|0) and T'(Z) | 0) be well-defined as (z,%Z) — (0,0)". The action
of a primary field on this vacuum generates eigenstates of the Hamiltonian:

|h’ﬁ> = ¢h,ﬁ(070) |O> .

The fact that these are eigenstates is easily obtained from the OPE properties of the primary fields:

[Los ¢}, 7(0,0)] = % ygdzzT(z) ©,7(0,0) = hey, 7(0,0) .

al
0

Similar properties are valid for other operators L,, and one finds

Lo|hEY=h|hT) Lo|hT) =0
; , VYn>0.
To|hF) =T | ) I.|hE) =0

So these states, which we call primary like the fields generating them, are highest-weight vectors for Vir x Vir. We
can thus generate a subset V;, ® Vi of the Hilbert space by the free action of {anzn};i_oo on the primary state
} h,ﬁ>:

Vo=V, = {L_le_kQ...L_kn‘hﬁ> \1§k1 < gkn\VnZO} .

The vector field V, is closed under the action of Vir and it's called Verma module.

The Hilbert space of a CFT is embedded in some suitable way (we will not cover this topic here) into %, @ 7 o,
where 2, = @, Va is the space of “right-chiral” states. The index a of the direct sum runs on the admissible
conformal dimension of our CFT; this number depends on ¢ and is usually infinite. There are however some notable
exceptions where the structure of the Verma modules becomes degenerate and the number of allowed highest weights
becomes finite. Let us list three important categories of CFTs:

e Unitary non degenerate: when ¢ > 1, the conformal dimension may take a continuum of positive values; for
any of these, V}, is unitary. An example in this class is the free boson, corresponding to ¢ = 1;

e Minimal models: when

(m —m')?

/ )

c=1-6 mLm', m,m €N/{0} ,

mm
the allowed conformal dimensions are restricted to take a finite number of discrete values, indexed by two
integers (r, s):

2 2 1 S r < m’

(mr—m's)* — (m—m/)

s = 4mm/ ’
1<s<m

These models are denoted as M, /. An example in this class is the Yang-Lee model, corresponding to the
choice m =5 and m’ = 2, meaning ¢ = _25_2;

e Unitary minimal models: amongst the above models, the unitary ones are those with m’ = m + 1 and they

usually are denoted as M,,. An example in this class is the Ising model, corresponding to m = 3 and ¢ = %

* This request contain in itself that of invariance with respect to SL(2, C)/Zs.
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Integrals of motion The first step towards the unveiling of the integrable structures of CFT was performed by R
Sasaki and |. Yamanaka [12] They considered a CFT on a cylinder and the algebra U(Vir) generated by the energy-
momentum tensor T'(w) along with composite fields built as (normal ordered) powers of T'(w) and its derivatives.
What they found is that there exists an infinite dimensional abelian subalgebra Z C U(Vir) spanned by ‘local
integrals of motion” (IM):

2

T={lpp-1}pe; , Iop—1 = /_TQk( ), [Hok—1,I21-1] =0,
0

where the cylinder radius is fixed at R = 1. The densities are some regularised polynomials of T(w) and its
derivatives; for example

c+2

To(w) = T(w), Ti(w)=:T*(w):, Tew)=:T>w):+ TR (AT (w))? :, (2.1)
where the reqularised product is defined as
)= B T X))
and 7 is the “chronological product™
: _ JAW)B(w) i3 (w) > S(w')
7 (A(w)Bw)) = {B(w)A(w') if S(w') > S(w)

Although there is no known closed formula for the densities Thx(w), they are uniquely determined by the requirement
of commutativity of local IMs and by the spin assignment rule:

%Z:’:: (w' —w)T (T(w)Tor(w)) = 2k Top(w) ,

which can be simply implemented by requiring Tox(w) to be a polynomial of total grade 2k and assigning grade 2
to T and grade 1 to derivatives. The first few IMs are “easily” computed

I, = Lo- 2—64 , This is the (chiral part of the) Hamiltonian! , (2.2)
= +2 5¢ + 22

L, = 25 L L,+12-S"%p 23

3 nzl + 0 12 0 +c 4% 6 ) ( )
c+11 c 3 —

I, = Z Ly, LypyLng: + Z [ n?—1- ﬂ L ,L,+ 3 Z Li_onLop_1 +
ni+ns+nz=0 n=1
c+4 2 3c+20 3c+ 14

2.2 Brief overview of classical KdV

In this section we will briefly present some very basic concepts and facts about the classical KdV hierarchy. The
reader interested in this topic can find a good starting point for the study of classical integrability in the review
[13]; for a more advanced read we suggest the beautiful book [14].

Why being concerned with the classical KdV? The reason is very simple. It is known [12] that the CFTs with
¢ < 1 are, in some sense, a quantum version of the classical KdV; in fact if we consider the “classical limit" ¢ = —o0
and perform the following substitutions:

Tw) = -SUw), [ ]= 2 e,

5 This is the corresponding on the cylinder of the radial ordering on the z-plane.
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where {, }p are the Poisson brackets, the Virasoro algebra reduces to the following Poisson algebra
{U(w), U(w")}p =2 U(w) + Uw)) &' (w —w') + 6" (w — '),

which is known to describe the second Hamiltonian structure of KdV, provided the Hamiltonian is chosen amongst
the classical IM:

27
dw
c hd
0
27rd
cl _ _’LU 2
0
27rd 1
o aw |3 4 2
B [ rw - jeww)
0

We choose the field U(w) to be periodic U(w + 27) = U(w), just like T'(w). These classical IMs, which form
a commutative Poisson algebra {Izx_1,I21—1}p = 0, are clearly the classical versions of the operators (2.2-2.4).
Different choices of Hamiltonian bring us to different equation of motion:

I¢ o 9,U=0,U
I o 0, U=02U+6U0,U The "canonical’ KdV (2.5)
I 9,U=-03U—-2Ud3U + 50,U0%U + 20U°%9,,U

This infinite sequence of partial differential equations is called KdV hierarchy and it can be shown to be equivalent
to a description of the isospectral deformations of the following second order differential operator depending on a
spectral parameter X:

L(w|A\) =02 + U(w) — A, (2.6)
called Lax operator. The connection between this operator and the tower of differential equations (2.5) relies on the
existence of an infinite set of operators Ma,_1(w), such that

d
dtan—1

L(w|\) = [May,_1(w), L(w|\)] <= KdV equation associated to IS, is satisfied.

For example the canonical KdV equation is obtained from the operator
Mz (w) = 402 + 6U (w)0y, + 3U’ (w) .

Associated to each Lax operator, there exists a differential equation, called usually auxiliary equation (or system if
one has to deal with matrix Lax operators). In our case the equation has the form (from here on the prime ’ will
denote differentiation)

L(w[N)p(w|A) = ¢"(w) — (A = U(w)) (w) = 0.

This is a second order differential equation and, as such, possesses two linearly independent solutions 1 (w|A)
and g (w|A). Very important characteristics of differential equations are the monodromy properties of the solutions;
these can be encoded in the monodromy matrix, defined as

(1 (w|A) , ha(w|A)) M(A) = (1 (w + 27 |A) , ha(w + 2[A))

Out of the monodromy matrix is then possible to define the T'-function. This is a central object in integrable systems
and is defined most simply as the trace of M

T(N) = trM(A) . (2.7)
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Although an explicit expression of T can be complicated to obtain, we can express it as an asymptotic series at
large A:

1 > Com
5 log[T] ~ A [1 =Y enls, A7 ] : (28)
n=1
(2n=3)!
P

where ¢ =1/2 and ¢, =

WKB expansion of the Lax auxiliary equation

It is instructive to compute explicitly the expression of the monodromy matrix. In order to do so we need to
find a representation of the solutions to the differential equation

V'(w) = (W = Uw)) v(w),

and a standard procedure which allows us to do so is the WKB method [15] The first step consists in
introducing a small parameter €2 in front of the second derivative:

Y (w) = (N = U(w)) p(w) ,

and search for solutions of the form

P(w) ~ exp %S(w) + Ap(w) + Ze"An(w) ,ase — 0,
n=1

where the sign ~ reminds us that the right-hand side is an asymptotic series. By inserting this form in the
differential equation and isolating each power of €, we find

€ Sw?=N-Uw) = S(w)z:l:/\//\z—U(w’)dw',

el S (w) 428" (w)AY(w) =0 = Ag(w) =k — ilog (N =U(w)) ,

€ o 25" (w)Al_ (w) + Al _5(w) + EA;C(U)) S e(w)=0, VYn>1.
k=0

This is a triangular system of differential equations, which allows us to obtain the n-th term by the simple
integration of a first-order differential equation. What's more, each even order equation happens to be the
difference of total derivatives; for example

(O log S’ (w))? — 202 log S’ (w)
16 S"(w)?

e Al (w) = 0y l

The odd-order equations, on the other hand, are proper first-order differential equations, as an example, the

first term reads
w

' - QSI/I(MI)SI(U)I) _ 33”(’(0/)2 ,
€2 - Ar(w) = / 85 (w ) dw'’ .

wo

Now, in order to obtain an expression for M, we need to see what happens to our solution when we shift
w — w + 2. This is easily computed remembering that U(w + 27) = U(w), so that

Aoy (w4 2m) = Agp(w) Vn >0,
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while
w27 wo w
Agp1(w+2m) = / Aogn—1| ) dw' = / Az 1 [U(w")] dw’ +/A2n—1 [U(w")]dw',
wo—27
so that

Agnfl(w + 27‘() = Agn,l(w) + /.Aanl [U(w’)] dw’ 5

where Ag,—1 [U(t)] is some functional of U(t) and A_1(w) = S(w). From this we easily infer that the
monodromy matrix is diagonal with eigenvalues

exp :l:/<\//\27+zv42n 1 ]) duw’

The first two terms in the large-X expansion of T (2.8) come from the expansion of the square root for large A,

2 21
! / / N2
in\//\? ) ~ [y <1 _Ulw)  Uw) ) A <1 gl i]ﬁ‘) .
™
0

rooo | 2 2\2 84 2XN27h g\t
0

On the other hand, higher order terms require the computation of more and more A, (w) in the WKB
expansion; as a simple example, let us take in consideration Ay

Ay (w) = AU (w)(X ~U(w)) 50" (w)* U'(w)  5U'(w)* +6U (w)U" (w)
' 32002 — U(w))} AT BAB 3200 '

When integrating the above term between 0 and 2, all total derivatives vanish and we can perform
integration by parts, so that the coefficient of A™5 reads, as expected

27
1 dw'’ ns Loone I g
=[5 (U(w)—§U(w) Y
0

We have thus shown that the T-function (2.7) serves as a sort of generating function for the classical IMs (2.8).
However we can do more, much more: in fact we can construct an infinite tower of Poisson commuting T-functions!
This is a consequence of a deep connection between KdV hierarchy and the Lie algebra si(2) as we are going to
briefly hint at. A close look at the differential operator (2.6) shows that it can be factorised:

L(w|A) = (9w + ¢/ (w)) (0w — ¢ (w)) = A?
with the field ¢(w) being the Miura transform of U(w) [16]:
~U(w) = (¢ ()" +¢"(w) . 29)
having canonical Poisson brackets
{B(w), ()} p = clw—w),  c(e)=n, 2n<z<2mnt1).
Note that since the field U(w) s periodic, the Miura field has to be taken, in full generality, quasiperiodic

d(w + 2m) = ¢p(w) + 27ip .
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We can now reduce the second order differential equation L(w|A)(w|\) = 0 to a system of first order equations:

%@—wmmwwzwww
(0 + &' (W) P(w|A) = Mp(w]A)

which can be written in matrix form
(8w — ¢ (w)o® — )\al) T(wlA) =0,

with ¢? being the Pauli matrices:

v (01 s (0 —i s (10
U‘<10 7= i o) 270 -1 )

Now comes the generalisation: since the connection between L and the hierarchy of KdV equations (2.5) uniquely
relies on the commutation relations between L and the operators Ma,,_1, we can think of defining an abstract Lax
operator

LWwlA) =0y — ¢ (w)H - NE+F),
where H, E and F are the generators of si(2) Lie algebra:

[H,E]|=2E, [H,F|=-2F, [E,F|=2H.

The commutation properties of this operator are exactly the same as those of L and, moreover, it reduces to this
last when the 2-dimensional representation of sl(2) is chosen. We thus expect the monodromy properties of this
operator to encode information on the KdV hierarchy. Now, let 7, with j € %N, denote the (25 + 1)-dimensional
representation of sl(2), such that w; [H]| = diag (24,25 — 2,...,—2j + 2, —2j). Consider the matrix equation

5 [Z (w]A)] Wj(w|A) =0,

where U, (w|A) is a (2j 4+ 1)-dimensional vector, and let us repeat what has been done just above. In order to
obtain a nice form of the solution to this equation, we rewrite it as follows (we omit 7; in the next few equations,
for clarity):

(O — ¢ (w)H) U(w) = e? W HY, e ?@HY (y) = X\ (F + F) ¥(w) ,

where the first passage is allowed, since H is diagonal. Now define ¥(w) = e~?(“)H W (w), so that it satisfies the
equation

DT (w) = Ae?WH (B 4 ) e HG () = \ (e*w(“ﬂE + e2¢<w>F) ¥(w)

where we used the property of any Lie algebra element A: e® Ae=H = ¢>2du(4) A \where the adjoint action is
defined by [H, A] = adig(A) A. The general solution of a first-order matrix equation can be written as a
path-ordered exponential:

U(w) = Pexp )\/dw' (6_2¢(w/)E + e2¢(w/)F) oo
0

with W0 being an arbitrary constant vector, representing the integration constants. A path-ordered exponential
P exp [fow a(w)dw'] is defined as the following series expansion

w

P exp [/Owa(u/)dw’] :2%0/1”.../f@[a(w’l)...a(w;)]dw’l...dw;l,

0

and the path-ordering & forces an ordering of decreasing argument from left to right:

e R
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Re-expressing U in terms of ¥, we obtain
U (wlA) = m; e?WH 2 exp /\/dw’ (672¢(w,)E + e2¢(wl)F) \Ilg? ,
0

Now, for each representation m; we can define a monodromy matrix:

2m

M;(\) = 7; 4 2P H P exp | A / dw (e—2¢<W>E + e2¢(w)F) , (2.10)
0
and a corresponding L-matrix° '
L;i(A) = [em™PH] M;(N) . (2.11)

This last matrix can be shown to satisfy the r-matrix Poisson relation:
{L;(NVSLy ()} p =m0 (A/N), Ly @ Ly ()] (212)
where the r-matrix is defined as

. . A+MNTHeH 2
rjy(A) = (men) k], rN) =g g (EQF+FRE).

The r-matrix Poisson algebra tells us immediately that the quantities’
T;(A) = rM;(A) ,
are in involution with respect with the Poisson brackets
{T;(N), Ty (X\)}p =0,

and are expected to generate the classical IMs in their asymptotic limit. Note that T'1 (A) = T(A).

We will not be showing the explicit proof of the relation (2.12), however we wish to close this section suggesting
an approach to the computation which we think gives an intuitive interpretation of the form of M. The core of this
approach resides in the following expansion of the path-ordered exponential as a “continuum limit" of an ordered
product:

27
P exp /a(w’)dw = lim eXwn)Awga(wn-1)Aw . ga(wo)Aw
N—o0
0

where w; = jAw and Aw = QW’T This expression allows us to write L; as (here too we omit 7; for clarity)
L(\) = e™PH A}im Hwn M) (wn—1|A) - - - L(wo|A) ,
—00

where the matrices 1; are

X y\n n
R S T
n=0
It is now sufficient to show that 1 satisfies the relation (2.12), for any value of w and A. This is reminiscent of the
approach to lattice models, in which we have a matrix 1 on each site and the full transfer matrix of the system is built
as a trace of the product of these matrices for each site. In fact we can interpret the matrix L(\) as the “continuum
limit" of the monodromy matrix of a lattice model, where e™PH plays the role of twist.

6 In the literature this object is sometimes called Lax matrix.
/ The operator denoted here with T are not to be confused with the densities of IM (2.1) introduced above.
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2.3 The quantum monodromy matrix and the T-operators

Let us now concentrate on our goal: we are going to reproduce in the ¢ < —2 CFTs® what has been sketched above
for the classical KdV hierarchy. Namely we are going to address the problem of simultaneous diagonalisation of
the local IMs (2.2-2.4) with a method that can be interpreted as a version of the Quantum Inverse Scattering (QIS)
[17] for field theories. Just as it was suggested in the previous section, all the object we are going to introduce have
a counterpart in lattice models and it is a good idea to keep in mind this parallelism. On the other hand these
objects will be the quantised version of those introduced above for the classical KdV hierarchy and we are going to
use the same symbols to denote them. Note that, from now on, we will consider the right chirality only.

In order to proceed to the construction of the objects T;, we first need the quantum version of Miura transfor-
mation: the Feigin-Fuchs free field representation [18]

2 — —
PTG = () +1 - B+ o e [ B o

where p(w) is a free field
a—p
— i P Pn inw
olw) =i1Q +i w—i—g e,

n#0
and the normal ordering : - : consist in placing the a, oscillators in increasing n from left to right. The operators
Q. P and {a,},,, generate an Heisenberg algebra:
| o n a2
[QvP] = §ﬁ ) [anaaWn] = §ﬁ Ontm,0 -

It is easy to see that this transformation becomes exactly (2.9) as ¢ — —oo. With this expression for T'(w) we are
able to give a description of the Hilbert space J#, in terms of Fock spaces %, defined as highest-weight modules
over the Heisenberg algebra; the highest-weight vector |p) € %, obeys to the following relations

Plp)=plp) , an|p)=0,Yn>0.

The Fock space thus defined is isomorphic to the Verma module V,, where
2
p c—1
h=1|=
(5) +=

Hn=PF., Fu=F

and we can describe the Hilbert space as

a ?

where the direct sum runs over the values of p corresponding to the allowed Virasoro highest-weights. These Fock
spaces are naturally graded under the action of Lg:

Fo=P 7", LF"=n+0F".
£=0

With some simple algebraic manipulation we can express the Virasoro generators {L,} in terms of the Heisenberg
algebra as

sc—1

B2Ln = ﬁ 7 + 2 Z ajan—j + Qp, (2P — TL(l — ﬁ2)) s
j#o,’ﬂ
-1 o
B2Ly = ﬁ207+2za_jaj+P2.
j=1

8 The restriction to this domain will be clearer later.



2 Integrable Structures of Conformal Field Theory 15

Since in theory we know how to express the local IMs {Iz;_1} in terms of the local densities Tor(w), the formers
can be re-expressed in terms of polynomials in the free field p(w) and its derivatives:

2m
. dw k
Iop = (—1)*B 2k/% : (gpl(w))z S e
0 Higher derivatives of ¢(w)

As it is evident from their definition (remember the spin assignment request), each term in a local IM, as complicated
as it might be, is nevertheless a product of operators L,,, where the sum of indices vanishes: Y .n;, = 0. As a
consequence [Lg, Iax—1] = 0 and the local IMs act invariantly on the level subspaces ﬁp(l). The full diagonalisation
of the integrals of motion is thus reduced to their diagonalisation on each level subspace, which requires a finite
number of algebraic manipulations; these, however, become rapidly extremely involved and so far the result is known
only for some simple cases, e.g. for the vacuum |p)

9 e = p— 2
1 (hc) 21
+2 5c+22
I(vac) h — h2 _ ¢ h
5 (h,c) TR
(vac) . 3 _C +4. 5 M — M

189h,e) = h W= +5(c+2) 7 —erh = beBe+ 1) 7=,

where In, 1 |p) = IQ(\I/cai)l |p).

In the setting provided by the Fock description of the Hilbert space, we can easily follow the footprints of
section 2.2 and define quantum counterparts of the monodromy matrices (2.10) and of the L-matrices (2.11). In order
to do so, we consider the quantum enveloping algebra U, (sl(2)) [19, 20] generated by the elements E, F' and H:

qH _ qu
[H,E]=2E, [HF]=-2F, [EF]=-——=H
q—q
with o
qi emﬁ ,

and let m; denote the (25 4 1)-dimensional representation of this algebra. The “quantum monodromy matrices” are

then defined as the following operator-valued matrices’
2
. 2miP H q _u
M;N) =mjqe P exp )\/dw (V, (w)g= E+ Vi (w)g™2 F) , (2.14)
0

where
- +2p(w) . 9 an _inw
Vi(w) =:e = exp ¥ E e ,

n=1

49 Z a_neinw] eF2(Q+Pw) oy
n

n=1

are called vertex operators; they have conformal dimension 3% and act on the Fock spaces by shifting the highest
weight:

Vj:(w) : yp — fpiﬁz .
The reason why in the path ordered exponent the combinations q%E and q’%F appear is related to the fact that
the correct construction of M; should start from the quantum affine enveloping algebra U, (sl(2)); we will return

to this point in section 2.5.
The L-operators are defined in the same way as in the classical case:

L;(\) = m; [e™PH] M;()) . (2.15)

9 Note that these objects can be informally interpreted as the monodromy matrices of the solution W, to the operator-matrix equation
75 L (w|N)] ¥ (w|X) = 0, where L(w|X) =0 — ¢’'(w) H — X (q%E—I— qf%F). Here one has to take care of normal ordering when

defining the corresponding of ¥ =: e=% : W. This gives rise to the presence of vertex operators in the path-ordered integral.
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Both the quantum monodromy matrices and the L-operators are (25 + 1) X (24 + 1) matrices whose elements are
operators acting on the space

o0
Fp = ® Fpnp? -

They have to be understood as power series in X:
50 2
Li(\) =m; [e""HY AF / dwy - - dwpK(wy) - K(wg) |
k=0 0

wy>>wy

where we introduced Y Y
Kw)=V_(w)g2 E+Vi(w)g > F. (2.16)

These series converge for any A if'" —0o < ¢ < —2; outside this region the definition of M; and L; necessitate a
proper regularisation. In these notes we will limit ourselves to the cases ¢ < —2.
The operators L; are tailored in such a way that the following RLL relation is satisfied

R (M) (L;(N) @) (Te Ly (V) = (@ Ly () (L;(A) @ D Ry j(A/X) (217)

where R, j(A) is the trigonometric R-matrix of U, (sl(2)), acting on m; @ ;. The fundamental-fundamental case
j=j' =1 reads as follows'’

2>
>

_ 1 -1 _
= AZAT a . (2.18)

R ()‘) - q—l —q A — )\—1

Nl=

1
2

Q>
>

In order to check the validity of the RLL relation it is possible to adopt a brute force method, that is discretise the
& exponential and compute the two sides of the relation, or interpret L; and R; ;s as particular realisations of

universal objects of the algebra U, (5(2\)) this last approach is sketched in section 2.5.

We can finally define the “quantum transfer matrices” as traces of the quantum monodromy matrices (2.14):
T;(A) = tre; (M;(N)) . (2.19)
As a direct consequence of the RLL relation, these matrices form a commuting family:
[Tj (A, Ty ()‘I)] =0,

moreover they commute with the operator P and, as such, act invariantly'” on each .%,. Finally through some
tedious computation [4] it is possible to show that, with the definition (2.19), the quantum transfer matrices commute
with all the local IMs'":
[T;(A); Tak—1] = 0,
which means that the level subspaces ﬂp(g) are the eigenspaces of T;(A).
Before explicitly presenting the simple case of m; = T1, we wish to underline the connection with lattice models.

Just as in the classical case, we can express the L-operators as a continuum limit of a product:

L) = e Tim 1wy Nl (wy -1 ]A) -+ 1(wolA) -

10 This is most easily inferred from the fact that the vertex operators Vi have conformal dimension 82 and, thus, Vi (w)V_(w') ~
(w— w’)72ﬁ2 (1 + O(w — w")). So, for the integrals to converge we must impose 32 < % which is equivalent to ¢ < —2.

1 Note that this is the same exact matrix as for the 6-vertex model [21]!

12 An informal way to see this is to notice that the operators K(w) are traceless; moreover the only terms in T; having non-vanishing trace
are those containing an equal number of operators E and F'. Thus, only products of elements of the type V_(w)V4 (w’) appear and these act
on Fock spaces as Fp — F, 4 g2 — Fp.

13 Note that the proof is limited to some low order IM; a full proof of the commutativity is still lacking.
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Here the “local” operators 1 are expressed as
L(w|A\) = exp [MC(w)Aw] ~ 1 4+ AC(w)Aw .

The form of K(w) is exactly that which we would expect from a lattice model:

K(w) =) Vi(w)w; ,
j=+

where w4 are generators of the U, (31(2)) algebra in matrix realisation (see section 2.5 for more details), and Vi
are a vertex operator realisation of the same algebra. In fact the operators

Vo(w) = V20up(w) ,  Vil(w) = e,
satisfy the ;l(?) subalgebra at level 1 [9]. So we can interpret 1 as being the tensor product of two operators acting
on two different spaces: one, corresponding to the matrices wj, is the auxiliary space; the other, corresponding to
the vertex operators Vj, is the quantum space. A pictorial representation is given in Figure 2.2. We wish to stress
that this connection is by no means mathematically precise, but rather an intuitive interpretation of the physical
meaning of the operators introduced above.

W WN WN-1 --- w1 Wo

Fig. 2.2: Graphical representation of operators 1(w;) and L; the horizontal green line represents the auxiliary space, while the
vertical blue ones correspond to the quantum spaces.

The basic representation All that has been said until now is rather general and abstract. In order to make
things more concrete, let us concentrate on the simplest amongst the quantum transfer matrices, namely T(\) =
T (A). The 2-dimensional representation of U (s/(2)) can be chosen as

=5 ) miE= (g o) mie=(] 9)-

and the operator T(\) can thus be written as a power series in A% (due to the tracelessness of the matrices E
and F):

™

T(\) = 2cos (2rP) + Y _ A" Gap (2.20)
n=1
where
27
Gy, = " / dwy - - - dwayn, €2 EV_(w1)Vy(ws) - Vo (wan—1)Vy (wan) +

w1 2wy

+6727TEPV+ (’wl)V— (w2) A V+ (w2n—1)v— (’wgn) s (22/])
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are operators commuting amongst themselves and with the local IMs
[G2n7 GQm] = O 9 [GQn; IQkfl] = O )

and, for this reason, are called non-local integrals of motion. Just as their local counterpart, they act invariantly
on each level subspace .%, and, in particular, the highest weight vector | p) is one of their common eigenstates:

Gan |p) =G50 (0) D) -

The vacuum eigenvalues can be calculated rather straightforwardly from the definition (2.21):

° n . 5B\ 125
G5 (p) = /dwldwl---dwndwn I1 {4sin (“’1 2“’7>sin <“’ 2“’7)] X

j>i>1

2

2 w; —w; \ ]2 -
le [2sin (%ﬂ 2cos |2p 7T+Z(U3j—wj) ;

ij=1 =1
and when n = 1, this expression greatly simplifies to
;o = 2 2
Gévac)(p) _ /dw/deCOS (27Tp+2]?(w2;2w)) _ 47 F2(1 - £?) _
A [2sin (252)] Il —2p—p%)T(1+2p—p52)

In order to obtain these results one has to use the following property of vertex operators:

- —2¢e8?
<mvxwﬂem»m>=é”w%%m)P$n<wzuv] o eE=dL,

and the Wick theorem.

All the operators Tj(\) are entire functions of A?, possessing an essential sinqularity at infinity due to the
accumulation of zeroes on the negative A?-axis. This can be shown by comparison with a result obtained in
[22], where a series similar to (2.20) was analysed and shown to converge in the whole complex plane, defining
an entire function with an essential singularity at infinity. As it turns out, the coefficients of this series are
larger in absolute value than (2.21), meaning that T is entire as well. Finally the entirety of the operators T
directly descends from this result, thanks to the T'-system we are going to present just below (2.25).

We are interested in obtaining an asymptotic series expansion of T(A) since, recalling equation (2.8), we
expect the integrals of motion to appear there as coefficients. In fact, as pointed out just above, it is possible
to examine the discretised version of M%()\)A Then, by means of standard Algebraic Bethe Ansatz (ABA), and,
subsequently, taking the continuum limit back to M%(/\) one obtains the following expression for the quantum

transfer matrix:
T(A) = A(g\) + A (g,

where
o 2
logA(g)) ~ AN T O Ty AHO-2E) =
og A(gA) et ; kl2k—1 TS -
larg(A) | < =

The constants in the asymptotic expansion are

T %_g 1+¢
- fgg [ER 022
2
2k—1
lre/ me N [2T(3-3 L [(1+ &)k - 1)
Ck = %(14—{) Corgig; F[li(k—%)é] ' (223)
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Notice how in this asymptotic expansion, A appears with fractional powers 1 + &; this might seem surprising,

until one remembers that the vertex operators Vi (w) carry a conformal dimension hy = (% = %& We can
_
thus think to the spectral parameter A as carrying an anomalous dimension [A] = [length]” T+€. The explicit

computations which yield these results are rather lengthy and we will not present them here. Nonetheless we
encourage the interested reader to delve into them, starting from the above cited paper [22].

2.4 T-system, Y-system and Thermodynamic Bethe Ansatz equations

Let us return to the analysis of the quantum monodromy matrices T, () associated highest dimensional represen-
tations of U, (sl(2)). It is easily deduced from their definition that them too are power series in A%

sin (2(2) + 1)TP) o= \9n ()
T;(\) = n .
i) sin (27 P) + Z AT G

n=1

The surprising fact about these expansions is that they are deeply interrelated; in fact the non-local IMs ngn) with

Jj> % can all be written as polynomials in Ggi) = Gayp, eg.

Gy = A;(2nP7f%)G2,
GY) = A;2rP, 212Gy + B;(27P,n5%)Gs (2.24)
where
A(ab) = 1 sin[(2j + 1)(a = b)]  sin[(2j +1)(a +D)]
I ~ 4sinasinb sin (a — b) sin (a + b) ’
Bilab) = 1 sin [(25 + 1)(a — 2b)] sin [(25 + 1)(a + 2b)]
A ~ 16sinasinbsin2b sin(a — b)sin (a — 2b)  sin (a + b) sin (a + 2b)

—92cosb— sin [(2j 4 1)a] ]
si

n(a—b)sin(a+b)

These polynomial relations suggest that there might exist algebraic relation between quantum transfer matrices
belonging to different representations ;. This is indeed the case, as the operators T; satisfy the following system
of finite-difference functional equations

Ti(? NTi(q 2A) = 1+ T, 1 (VT 1 (V) (2.25)
known as T'-system or Hirota bilinear equations [23, 24]. This system of equations is a direct consequence of the
RLL relation (2.17) and can be obtained by using a procedure called R-matrix fusion'®, well known in lattice
theory [19]. It is worth noticing that equations (2.17), (2.25) and the R-matrix (2.18) are essentially the same as the
corresponding ones in the integrable X X Z model [21]. This, clearly, is not just a coincidence as the underlying
algebraic structure of the latter is the same as that of the CFTs we are studying here; this structure knows nothing
about the discrete or continuous nature of the system and is thus expected that the equations arising from purely
algebraic considerations (such as the RLL relation above or, as we will see, the T'Q) equation) have the same
structure, no matter what is the model under study. The information on the different nature of the models will be
contained then in the analytical properties of the objects involved in these relations. These considerations will be
precious later, when we will extend this setting to massive theories.

For generic values of the central charge ¢, we have an infinite hierarchy of quantum transfer matrices which,
thanks to the system (2.25), can all be expressed in terms of the fundamental one T(A):

Ti(\) = T(g2N)T(g 2\ —1,
Ts(\) = TENTWNT(g ') —T(g2)) —T(g2N),

™ In fact, while the expressions (2.24) can be obtained by brute force computation, we prefer to consider it as a consequence of (2.25).
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With some algebraic effort, we can also recast the T-system in the following form

TT; (¢ A) =T, (¢ N +T;1(q% ). (2.26)
Let us now introduce the Y-operators as follows [25]:
Y;(0) =T; 1 (NT;.1(N) , NFE =l
with the convention Ty =1 and T 1 =0 then it is easily showed that they satisfy the Y -system equations
vy —
YV = (14 Y,0) (1+Y,,) . (2.27)
where we have introduced the short-hand notation for shifts: Y* = Y (6 + ir$ ) This last infinite system of finite

difference equation can be further recast in an infinite set of non-linear integral equattons known as Thermodynamic
Bethe Ansatz equations whose general form is the following

&9(0) =208 Z / o' ;1. (6 — 0') log [1+6_€k)(0 >] : (2.28)

()

where the pseudo-energies €, are the logarithms of the Y'-operators eigenvalues:

E;g) (0) = log {Yj(é)(ﬁ)} , Y;(0)[6) = }/j(g) 0)16)

and ¢ labels the eigenstate under consideration. The function Z()(6) is called driving term and depends on
the particular eigenstate, while the kernel ¢;(8) only depends on the algebraic structure of the ¥Y-system. The
procedure to go from (2.27) to (2.28) is intuitively simple, however one has to take great care to the analytic properties
of the functions involved. More specifically one has to know the asymptotic behaviour of the Y-functions, which will
be encoded into the function Z(). Moreover the presence of poles and zeroes in the functions Yj(l) might create a
great deal of problems. All these questions are addressed in the [26] and we recommend interested readers to refer
to that review.

Truncation and the minimal models M3 2,41 TBA  The relations we derived just above, the T-system, the Y-
system and the TBA equations, although very simple-looking and fancy, still consists of an infinity of equations
for an infinite set of functions; for this reason, dealing with them is, to use an euphemism, complicated. However
there are situations in which the number of equations and functions involved reduce to a finite number; this
fenomenon is called truncation. The parallel we traced above with the lattice model helps us identify these
cases: it is known that, for some particular values of the parameters, the X X Z system can be reduced to
the RSOS model [27] and the T-system collapses to a finite set of equations for a finite number of functions
[28, 29]. This phenomenon of truncation in X X Z can be traced back to a purely algebraic fact: when ¢ is a
N-th root of unity the (IV 4 1)-dimensional representation Ty of U, (sl(2)) becomes reducible, while all the

representations with % <j< % remain irreducible. In particular
TN =7Nn_ Dok Doy,
2 2
where gjj\[, are two particular one-dimensional representations such that
+ + +
oy [El=on[F1=0,  oy[H]==+N.

Being purely algebraic and, as such, blind to the particular theory overlying the algebra structure, we expect
the phenomenon of truncation to happen for CFTs as well. Indeed, considering the decomposition above, and
applying it to the abstract definition 2.14 we immediately obtain that

Ty(A) =2cos(2rNP)+ Ty (),
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N 1

which makes (2.25) a closed set of equations for the operators {Tj}j2:02.
In this case too is convenient to introduce the Y -operators, with a slight modification with respect to the

general case, due to the finiteness of the system:

1 N

YJ(H) = Tj_l(A)Tj_,’_l()\), j:§,1,. .,3—1,

Yo(9) 0,
Y(H) = Ty .

The Y-system is then immediately seen to be as follows
1 N 3
ty: — P
YIY; = (1+Yj,%)(1+Yj+%), i=glen g -5,
- 27iN PNF —2miNPYF
YL Yy, o= (1+Yy ) 1+ VPY) (14 Y) (2.29)

?+?7 = (1+Y%_1).

This Y-system is called of type Dy [30] as it can be nicely encoded in the Dynkin diagram of said type.
Indeed let us associate each Y-operator with a node of a graph and draw lines between these whenever the
corresponding Y's appear in the same equation. What we obtain is the diagram shown in the picture below: a
Dynkin diagram of type Dy.

eQwiNPY

®
Q =
of:

e—27r|NPY

Note that for ¢ to be a root of unity, we must require 32 to be a rational number, say 3% = % and, by
virtue of (2.13), the central charge becomes

c=13—6(5—2+62)=1—6M

/ )
mm

identifying our CFT as the minimal model My, ,,». Thanks to this identification we now realize that the
truncation of the T-system is a clear reflection of the finite number of primary fields of these CFTs.
We can get a further simplification of (2.29) by considering the particular minimal models M3 25,43

2 2k—-2n-3

s~ 0 7 2:— - @@
P E s YT S@na)

k=1,...,n+1,

for which the Kac¢ table is composed of a single line of 2(n + 1) boxes, symmetric along the middle. This
symmetry reflects itself in the T-system and the following relation is valid

1
,...,n—|—§ — Tn_,’_l()\):l,

2
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thanks to this which, the Y-system simplifies to
+v- -
Yiv; = (1+Y,) (1+Y,0y) . =
Yn-l—%—j = Yj )

which corresponds to the Dynkin diagram of As,, type [30, 31], depicted in the following figure.

<

=

. . st . .
Let us now focus on the particular eigenvalues ngrs (9) corresponding to the ground state |p,41) (this

is the state with lowest Ly eigenvalue). We know that the functions T{"*"()) are entire functions of A%, with
asymptotic behaviour

2m s
r.st. 1+ o . .
T ()~ myA ¢, mj=—— cot (55) sin (75¢) ,

A—00

with m given in (2.22). This information is sufficient to pass from the Y'-system to the TBA equations:
0 do’ / —e ., (0")
e;(0) = mmje —Z 5 (6—8)log [1+e ) } , (2.30)
7 o

where we introduced the pseudo-energies ¢; as
ijgr.st.(e) _ eej(e) i

The kernel ¢; /() is defined from the equation

() =15, > g(0) = wZIN/ 0 — 0)i (00,

— 00

with fjk being the incidence matrix of Ag,, and s(f) = m the inverse of the shift operator: s7! : f —

fT + f~. Taking the Fourier transform of the above relation, with some effort, is possible to show that the
kernel ¢ can be expressed as the logarithmic derivative of the “massless S-matrix" S; ;- (0) [31]

@i (0) = —idplog (S;(0))
whose explicit form is known:

2 min(j,5')—1

. sinh # + isin (7j¢)
Sjj(0) = Fjyjr (0)F];—j(0 H F2 k() F(0) =

sinh @ — isin (7j€)

Notice that this matrix appears directly from the algebraic properties of the truncated Y-system. It is a
consequence of the internal consistency of this setting that S; j» happens to be exactly the two-particle element
of the factorisable scattering matrix proposed in [32] for the S-matrix'>description of minimal models of the type
M3 on 1. This little “miracle” gives us a strong confirmation of the correctness of the BLZ approach.
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2.5 Baxter Q-operators

The construction of the @Q-operators follows very closely that of the T-operators presented above. Like these last
they are defined as traces of some particular monodromy matrix built out of vertex operators and the generators of
some algebra. The difference between the two stands exactly in the choice of the algebra. For the construction of Q-
operators it turns out that we need the quantum oscillator algebra osc, generated by {#, £, £} with commutation

relations
1

q—q "

The appearance of this algebra might seems strange as, at first sight, it does not seem to be related to the sl(2)
algebraic structure we have been using to construct everything else. Truth is, osc, and si(2) really are intimately
related and the following in-depth box explains this relation. We encourage the reader not familiar with this fact to
go through this explanation to better understand the profound relation between the T'- and @-operators.

[H,E1] = £2&4 g€ E_ —qE_EL =

Quantum affine sl(2) and universal operators In many cases, the right way to delve deeper in the core of
a theory is to generalise the mathematical setting; this not only opens the way for further achievements but
almost always cleans up the table and bring about a great simplification of the structures: complicating to
clarify. It turns out that the most natural starting point for the construction of the L- and T-operators is a slight

generalisation of the algebra U, (su(2)): the quantum Kac¢-Moody affine algebra U, (sj(?)) Using this as a

starting point we will obtain in one fell swoop a natural description of both T- and Q-operators, displaying
explicitly their deep connection, as well as a setting in which the algebraic relations introduced in the previous

section can be easily demonstrated. Let us thus introduce the algebra U, (5(2\)) it generated by the six

elements {z;, y;, hi}gzo which satisfy the commutation relations

[hiaxj] = —Q;;T; , [hlah]] =0 ) Z7] =0,1,

[hzayj] = QijY; [yZaIJ] = 6’Lj q—q 1 ) Zv] = Oa 1 )
and the quantum Serre relations

aix; — (323w m; + [B)gxizwd — xjal =0,
y2y; — Blav2yys + Blavivsve —vud =0
where we define the g-numbers as

gt =q"
[n]g = —1 [nlg —n.
q—q q—1

The matrix a; ; is the Cartan matrix of the affine algebra su(2):

(2 =2
aij =\ _o9 o ij.

In order to be consistently defined this algebra necessitate the further introduction of the grade operator d

[dv hO] = [dv hl] =
[dv $0] = [dv yO] =

and the central charge (obviously not the same thing as the central charge ¢ of the CFT!) k = hg + hq. The
algebra thus defined is a quasitriangular Hopf algebra [20, 34, 35] whose co-multiplication

A () — (7)) ot (70)

[dv'rl] =1 ,

0,
0 ) [da yl] =Y,

15 More information on the -matrix approach to integrable models can be found in [33].
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is defined by its action on the generators:

Az)=z;01+qg " @2, Aly)=y®¢"+1®y;,
A(h))=h;®1+1®@h; , Ald)=do1+1®d.

There exists a second possible choice for comultiplication:
AN=ooA, o(A®B)=B®A,VA Bcl, (57(?)) :
and the property of quasitriangularity makes sure [36] there exists an object called universal R-matrix
ReBy®B_,
intertwining between these two co-multiplications

A(AR =RA(4), VYAel, (5/1(2\)) . (231)

—

Here B4 and B_ are the Borel subalgebras of U, (31(2)) generated by the elements {ho, h1,yo,y1} and

ho, h1,xo,x1}, respectively. This universal R-matrix satisfies the Yang-Baxter equation
{ho, h1, wo, p y g q
RIZ=R®1
R12R13R23:R23R13R12 R23:1®R
R3 =(c®1)R??
as is obtained straightforwardly from the action of the comultiplication
(A®1)R="R'3R?*?, (1@ A)R=R'3R!?,

and the relation (2.31). An explicit form of the universal R-matrix for U, (@) can be found in [37].

Using the generators introduced above, we can build the following abstract operator

27
Lxdrpe | [Kudo| . Kw) = V(i + Vilw)y
0
where the operators P and Vi are the same ones we defined in Sect. 2.3 and we set hg = —hy = h, which

corresponds to choosing the central charge k to be zero. It is evident that £ € By and, with some simple
computation, one can show that

AL)=(Le)(1®L), ANL)=1xL)(Lx1) .
For this reason, the RLL relation follows automatically from the definition of £ and R
RLRDARL)=1L)(LX1)R. (2.32)

This is an extremely important relation; being completely abstract, contains in itself the RLL relation for
any possible representation of U, (51(2))4 In particular if we are able to map £ into Lj, then the (2.17)

—

will be automatically demonstrated: we need to find an homomorphism between U, (51(2)) and Uy (sl(2)).

More precisely we want a whole family of homomorphisms, since we need to introduce the spectral parameter
A which, in this abstract setting, is absent. These homomorphisms actually exist and are named evaluation
representations:

H

zo = ATF g x> A1Eq
e Uy (@) 2 U (512) , {wmaE {peatE
ho — H hy— —H

H
2




2 Integrable Structures of Conformal Field Theory 25

where {E, F, H} are the usual generators of U, (sl(2)). It is immediate to verify that
m(A L =L;(A),  m(A) =mjoevy,
while it is less obvious but still verifiable that, starting from the general definition of [37], we obtain
(m(N) @ mje(\) [R] = pjjo (A/X) R (A/X)

with p; i(A) being an uninteresting scalar factor. In this light the operators T;(\) are nothing but a specific
representation of the following more general “universal T-operator”

7=t ) 7 )

and one can think of defining new operators from 7, by choosing different representations of U, sj(?) . Any

two of these operators will commute amongst themselves, as a direct consequence of the universal RLL relation
(2.32), and this is precisely a property that we want for our Q-operators. However with the family m;(X), we
have exhausted all the finite dimensional evaluation representations: we need to look elsewhere. As mentioned
above, the correct choice of algebra for the construction of QQ-operators happens to be oscy. Even though it

might look rather different from ¢, (@) it is an easy exercise to show that the two following maps

hw— +H
wi[ D Uy (51(2)) — 05Cq , Yo — A+,

are homomorphisms of B, into the quantum oscillator algebra osc,.

Consider now any representation p of oscg, such that the following object
Z(p) = try, [eQT’ipH] ,

exists and do not vanish for $(p) < 0. Then we can construct the following operators
2
Li(A) = pe(N) [£] = p{ TP H P exp /\/dw (V— (W)= FEx + V+(w)qu%5¢) :
0

where
p=(N) = powy
and the corresponding realisation of 71°
AL(N) = Z N (EP)tr, [eFTPHLL(N)]
Notice how, allowing analytic continuation from the ¥(p) < 0 half-plane, these operators enjoy the symmetry

A\ N A(N).
£ ) Ty AFN

These operators, as much as the other we introduced, have to be understood as power series in A2 (since, here too,
the odd terms vanish under the trace)

Ai()\):1+z Z )\2"a2n (0'1,...,0'Qn|:|:P)J2n (:FO'1,:FO'2,...,:FO'2n) N (234)
n=1{g;=41}2",
i 0i=0

16 Note that in this case we need to add a reqularising factor to the trace. This is due to infinite dimensionality of the algebra oscq.
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where we introduced the two functions

2
JQn(Ula e aa2n) = qn / dwl e denVcrl (wl) e Va'2n (w2n) 5
0
W= 2wy

agn(dl, e ,Ugnlp) = Z_l(P)fl’p [62FiPH5(71 "'5(72n] .

The really interesting fact about this decomposition is that the dependance on U, (g(?)) is contained entirely in

the coefficients ag, which turn out to be uniquely determined by the commutation relations of the generators and
the cyclic properties of the trace; as such these do not depend on the chosen representation p of osc,! Clearly the
coefficients Ja,, are closely related to the non-local integrals of motion Ge,, however a more neat expansion of the
operators A is the following

. . r(1-p2
log(Ax(\) == y*"Hap, y= %/\ ; (2.39)
n=1
where the Hy,, are a set of non-local integrals of motion alternative to the Gg,, ones and, obviously, algebraically
related to these, e.q.
_ #r (62) .
T 4nl (1 - B%)sin (7P +7B2) -

Finally we can introduce the Baxter () operators as

H, (2.36)

Q:(\) = )\ﬂB_PQAi(/\) .

Just as the operators T;(\), they act invariantly on .%,, which is an immediate consequence of the representa-
tion (2.34) of Ax. Below is a list of the properties of @ operators, which descend from from their definition as
representations of 7~ (2.33) and from the structure of the representations involved:

1. they commute amongst themselves and with all the T"-operators
[Qx(V), Qx(N)] = [Q+(N), Q= ()] = [Q+(V), T;(\)] = 0.

Consequently they commute with all the IMs, local and nonlocal
[Q:I:()\)a IQkfl] = [Q:I:()\)a GQn] = [Q:I:()\)a H2n] =0 5
2. they satisfy the Baxter T — @ relation

TAN)Q=x(N) = Qx(g)) + Qg™ A) .

This relation is a second order finite-difference equation whose “potential” T(A) is a periodic function of
log (/\2); for this reason the two solutions Q4 and Q_ can be interpreted as Bloch wave solutions to the
T — @ relation.

3. they satisfy the quantum wronskian relation
Q:+(*M)Q-(¢7*A) — Q4+ (¢ 7N)Q_ (g% \) = 2isin (27 P) . (237)
This relation guarantees the independence of the functions Q4 and Q_, solutions to the T'— @ relation

4. Wronskian expression of T;

2isin (27 P) T;(A) = Q4+ (¢ >N Q-(¢7772X) = Qi (72 0)Q-_ (¢ 2 ) . (238)
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The asymptotic of Ay: a simple case A particularly simple situation is when 2p = N, for some integer IV;
then the quantum wronskian (2.37) vanishes, meaning that the @-functions Q4 and Q_ are linearly dependent.

In particular rather simple direct computation shows that A+()\)’ = A,(/\)‘ = AM)()\), where this
last operator can be written as - -

50 on 27rd n 27rd n

AN =Y Z g, /—wv /—“’V_
( ) Z (TL')Qq o +(w) ot (’U}) )

n=0 0 0 2p=N

with
n = —iiﬂ)\
~ sin(np?) ]

and the symbol &2, orders the factors from left to right in decreasing w order. The vacuum eigenvalue of this

operator AV ()) lp=5) = Ag\v,ac)()\) |p=1%) coincides with the one-dimensional Coulomb gas partition
function

2
vac . = % - dwedw i "B —w
Agv )(/\) = In(x) = E e /( I e) N SR (e—we) o

472
=1
. o\ 1287

[Liz; ‘4sin(w12wj)sin(w12wj)}
X

282
L, 2o (252

1,9 2

which can be shown [22] to define an entire function of s2, with asymptotic behaviour

n=0 0

3

log (Zn ()~ " .
%2 —00
In fact with some effort one can show that the same beaviour is valid for all the eigenvalues of A(¥)()\), meaning
that

1
log (A4 (A ~ M (=) 239
og (A+(N) N s (A7) (2.39)
Although the entirety in A% of operators A4 ()\) can be demonstrated in general, the above asymptotic behavior
is explicitly demonstrated only for 2p = N € Z. Nonetheless it is reasonable to assume that this behaviour is
valid for any value of p as we shall do.

2.6 Bethe ansatz and non-linear integral equation

In this section we will concentrate on the eigenvalue Q(X) = Q% (X) of Q4 (X) on the state |a) € %, similar
considerations can be obtained for the eigenvalues of Q_()\).

Let us denote T'(A) and A(\) the eigenvalues of T(A) and A4 (), respectively, on the state |a). Then the
following two equations descend directly from Baxter T' — @ relation

TNQM) = Qg + Qg™ ,
TNAN) = e2™P A(g)\) + e 2P A(g™)N) .

As we will shortly see, provided the analytic properties of the functions A and T', these equations impose severe
restrictions on the allowed solutions. Let us recall the properties of A and T' we agree on

e Analyticity: both functions A(X) and T'(A) are entire in A? € C;
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e Asymptotic behaviour:

AN o~ exp[]\/[(_)@)ﬁ},

A2——o0

1
) o om0
Iarg()\z)‘<7r

where m is given by the formula (2.22) and M is presented below in (2.42).

e Location of zeroes': the zeroes {)\i};io of A(X) are either real or pairs of complex conjugates. For any
eigenvalue A()), the number of zeroes on the positive real A%-axis accumulate towards +oo, while the number
of other zeroes remains finite. For the vacuum, if 2p > —#32, the only zeroes are those on the positive real
A2-axis. We avoid those values of the highest weight (e.g. 2p = —3% — n) for which A3 = 0.

These properties allow us to use Hadamard factorisation theorem: if 0 < 52 < % then the asymptotic behaviour of
A(X) tells us that its order pa, as a function A\?, is % < pa < 1, meaning that we can write the very simple product

A(/\)_lio—i—;) . A0)=1.

Now, let us take the “T" — A relation”, which we can write as

AN

2rip o A(q/\)
AN T

a(A)+1, a(A\) = e4ﬁipm ,

and evauate it at A* = A2, recalling that T'(\) is devoid of singularities at finite A%; what we obtain is an infinite
set of coupled algebraic equations of Bethe ansatz-type'®

aAg) =—-1 = ]O_o[ S _e—Amip vk € N
W N —g2a2 ’ '

As always the infinity of equations and variables at hand might sound slightly scary, however there exists a beautiful
procedure which allow us to “resum” these equations turning them into a single non-linear integral equation (NLIE)
paired with a finite set of Bethe ansatz equations for a finite set of variables. The introduction of this method in the
context of QFT is due to C. Destri and H.J. de Vega [39] although the non-linear integral equation first appeared in
a work of A. Kliimper, MT. Batchelor and PA. Pearce [40], where it was used to compute the central charge of 6-
and 19-vertex models. We will not present the derivation of the equations, as it follows the same exact lines of the
original article; we limit ourselves to displaying the result:

ilog (a(f)) = —2mf5 + 2M cos ( 5 '8262) e+
+iY, log (S(0 — 0,)) — 2G S [log (1 + a(f — i0))] > (2.40)
a(f,) = -1

1
where, as before, A\1+¢ = \1-6% = ¢? and {6, }, corresponds to the set of those zeroes {)\i = ez‘ga(l_ﬂ2)} which
a
lie outside the real positive A2-axis. We used the sign % to denote the convolution of two functions:

oo o0

fg(6) = / 40/ (60— 0)g(0') = / a6 f(8')9(0 — ) .

— 00 — 00

and we introduced the kernel )
G(0) = 5(60) + 500 10g (S(6)) |

7'We will not make use of the knowledge about the zeroes of T'(\).
'8 For more information on Bethe Ansatz method of solution for integrable models see [38]



3 Integrable structures of massive integrable field theories 29

and the function
) . 14+¢
d sinh (wu—)
S(0) =exp |—i / —Vsin(VG) 2
v

— 00

cosh (w%) sinh (m/%)

which coincides precisely with the soliton-soliton scattering amplitude for the sine-Gordon model [41]. Given a
solution a(A) of the NLIE (2.40) above, one can recover the function A(A) with the following formula

. < v+ i0 iuif
log (A(A) = _I_ /_ ducosh (w%ﬁ) sinh)(wﬁ%io) (_)\2) ’
g(v) = / %S[log(l—l—a(@— i0))] e 7. (2.41)

— 00

It is possible to use this formulae in the case of the vacuum eigenvalue A9 () in the limit p — oo to compute
the exact form of the coefficient M in (2.39). This turns out to be

e (59 ()

We will not present the computations here and refer the interested reader to the original article [2].

3 Integrable structures of massive integrable field theories

Having extracted and analysed the integrable structures of conformal field theories, a natural question arises: are
these results “exportable” in massive field theories? The answer, at least for what concerns theories obtained as
integrable deformations of CFTs, is positive. Actually, as it turns out, this extension is rather straightforward: the
equations keep the same exact form they have in the massless case. As we already noticed above, this is expected
since the algebraic structure governing massless theories survives unscathed to the integrable deformation. On the
other hand, the analytic properties of the various objects we introduced undergo a radical change as a consequence
of the interplay between the two chiralities which, in presence of a mass scale, is no more trivial.

In the following we will first briefly review A.B. Zamolodchikov results concerning integrable deformations of
CFTs [42] and then construct the T-operators for a particular class of these.

3.1 Brief overview of CFT integrable deformations

Remember how in a CFT there exists an infinite set of integrals of motion, which can be constructed from normal
ordered products of the energy momentum tensor T'(u) and its derivatives:

27 27
dw - W —
| DYSESY :/Q—Tzk(w), Ipp— :/gT(W)
0 0

All these IMs are in involution: they form an abelian subalgebra Z of U (Vir) (same goes for the left chirality,
obviously).

Given a CFT with Hamiltonian Hcpr, we can think of deforming it by a relevant field ® (clearly belonging to
that same CFT), obtaining thus a massive field theory

Hy = Heer + i / ®(z)dz? .

In general these theories are not integrable: the appearance of a mass scale inevitably destroys the conformal
symmetry and, along with it, the abelian subalgebra containing the IMs. Only some of these survive and can be

written as
27

27
I, = / Tordw+ O, 1dw] T, = / [6.dw + Tosrd] |
0 0
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where T, T, ©, and O, are some local fields satisfying the current conservation law
5T'erl - 8('_)571 3 8Terl - %571 5

and the index s takes values in a finite set: s € X, €(X) < oo, where € denotes the cardinality of a set. It
turns out, however, that with the right choice of perturbing field this set X becomes infinite; in other words there
exist particular perturbations for which the abelian subalgebra Z survives in its entirety'®. As a consequence the
massive theory obtained through these deformations is integrable inheriting in toto, with suitable modifications, the
integrable structure of the corresponding CFT. In [42] ALB. Zamolodchikov showed?’ that this phenomenon happens
in CFTs with ¢ < 1 if one chooses @y 3y, ®(1,9) or P(31) as perturbations, where the bracketed indices stands for
(r,s), identifying the fields on the Kac Table [8] In the following we will concentrate on ®(; 3y perturbations only.

The @ 3y perturbations of CFT  Consider the massive field theory defined by the Hamiltonian

Hy 3y = Hcrr + ﬂ2/‘1>(1,3) (z)da?®

where @y 3) is a primary field of Hcrr with conformal dimensions

h1,3:E1,3:252—15 % )
which satisfies the null-vector equations
[2(1 +26%)L_g —4AL_1L_5+ %Lﬂ] P13 (w, W) =0, (3.1)
[2(1 + 28 5 —4T_ T+ %Z?’_l] Oy 5)(w,W) =0, (32)
and is assumed to have the following canonical normalisation
<q)(173) (w, W) (1,3 (wl’w/»CFT (w@)_f(w/@/) ‘w - w,‘_‘“‘lf’

From dimensional analysis one immediately sees that [[L2] = [Length]hl’r1 and [ can be thought of carrying an
anomalous dimension of h; = h; = 1_}2“’3 = ?15 Notice how this is exactly the opposite of the anomalous
dimension carried by the spectral parameter A in the analysis of the above section.

Any field theory is completely characterised by the infinite-dimensional vector space of local fields 2 = {Oj}jeN,
along with the totality of their correlation functions. Generically, when taking a perturbation of a CFT, the fields
of this last require an infinite number of renormalisation parameters in order to cancel the ultraviolet divergencies
which arise in correlation functions. In the case under consideration, however, the massive theory turns out to be
“super-renormalisable’, meaning only a finite number of counter-terms is needed (for 5% < % that is ¢ < —2, there
are actually no UV divergencies at all). If, furthermore, we are in a finite size geometry, as we are, the infrared
divergencies are completely under control, thanks to the natural cutoff R < co. For these reasons we can safely

assume that the Hilbert space of the perturbed theory has the same structure of that of the original CFT

a%ﬂ(l,g) ~ JHrT (33)

and there exists a one-to-one correspondence between fields of the two theories. In other words one can assign
to fields in the massive theory the roles they played in the CFT; in this sense there exists in the massive theory a
concept of primary fields, of descendants and also of Virasoro operators.

Consider the subspace Acrr C Qcrr, consisting of all the composite fields built out of T'(w) and its derivatives.
Now take the quotient of this subspace by the action of L_;:

Acrr = ACFT/ (L_1AcFr) C AcFr -

19 Actually this is not strictly a consequence of || X|| = oo, but for the models we are going to analyse it is conjectured to be so.
20 Actually he made conjectures based on strong physical assumptions. His conjectures were never disproved since then and are assumed to
be true.
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This further subset ACFT consists of all those composite fields which are not total derivatives (remember that L_;
acts on local fields as a derivative). Then it is immediate to notice that all the integrals of motion are generated as
integrals of some element of Acrr; informally

7= /ACFT .

Now, while clearly OAcrr = 0, this is no more true when considering the corresponding subspace in the deformed
theory; in general one will have

Iy => p*rM . T,eA,  R™M eq.

n=1

By simple dimensional analysis, we see that the fields Ri@l must have dimensions (h,h) = (s —n +nhy 3,1 —
n 4 nhy 3); however, no field in Q is allowed to have negative left conformal dimension, meaning that the series
above must truncate’! for n bigger than some integer N > 1. Moreover, since ®(1,3) is the most relevant field in
its OPE subalgebra, we conclude that N =1

5115 = ﬂQRs—l .

Denoting as usual with V; 3 the Verma module with highest weight hq 3, we have
LoV = (ha+9)V, ToVid =maV(y,  Vis=EW3,
s=0

and, clea r[g22

R._1 € VS;D .

We can thus interpret the anti-holomorphic partial derivative § as a map between subspaces of Q:
3. A (s—1)
0: A — V5 .

By taking first-order corrections to correlation functions involving he field 7%, one can show that

2m

oTs(w, @) = | Ts(w, @), ﬂ2/dw’<1>(173)(w',w) ,
0

which is a usual formula of perturbation theory. As a consequence

[85 L*l] =0 )
and we can define a set of operators D,, : A — V; 3 from their action on the vectors of A, informally:

27
DyA = |A, 32 / dw' ™' =P | o (w', )
0

Clearly we have @ = Dy and it is fairly easy to prove the following relations
[Lns D] = = [(1 = ha3)(n+ 1) + m] Dy
1. _
D,nfl -1 = EL_l(I)(l’s) (w,w) .

21 Remember that h1,3 = 262 — 1 and, if ¢ < 1 then h13 <1
22 Note that we care-freely apply the CFT concept of Verma modules to the deformed theory. This can actually be done thanks to the
isomorphism (3.3), since we logically expect that the decomposition of the CFT Hilbert space into Verma modules survives to the deformation

along with the other structures. Therefore it should exist in the massive theory a decomposition of JA4,3 = @, (’Va ®7a> into spaces
Ya =~ Vq. We use the same notation as in the CFT, hoping this note will be sufficient to avoid confusion.
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Finally we are at a point where we can explicitly compute the action of d on the elements of A Let us begin with
the energy-momentum tensor To =T = L_o - 1 itself

OT = i*DoL_3 -1 = p*(h1,3 —1)D_o-1=p*(h13 — 1)L_1®(1 3) -
Introducing the local field ©g = © = fi?(hy 3 — 1)®(1,3), we see that we can write
gTz = 8@0 s

which is a current conservation equation and, as such, define an integral of motion I;.
Let us now try and see if there’s a current conservation law also for the next element of A: Ty = L?, - 1. In this
case we obtain

0Ty = ji*Dol%,-1=f*(h13—1)(D oL o+ L oD 5)-1

-3
L31> D1,3)

h
= %(his—1) (21:21;1 4 8

and we cannot write 9T} as the holomorphic derivative of a local fieldl As a consequence there seem to be no
conservation law.

Degenerate fields and integrals of motion We have seen that there seems to be no hope of recovering the continuity
equations 0Ty, = 0Oa,_» for n > 1 and, as such, we have only two integrals of motion: I; and I;, which is to say
the energy I; +I; and the momentum I; —I; of our system. However, we forgot that we have an ace in our sleeve:
we chose the perturbing field to be ®(; 3y, a degenerate field which satisfies the level-3 null vector equations (3.1)

and (3.2)! Recalling that L_oL_1 = L_1L_o — L_3, we can rewrite 9Ty = 804 where

(h13—1)(h13+3)

h

Ag 1,3 — , , 2
2h13L_9+ (h13—2 L P ,

< 1,302+ (h13 ) 6 (s 1 1) 1> (1,3)

o, =
2T h13

which is a proper conservation law and give rise to the integral of motion Is.
The conjecture of Al. Zamolodchikov is that the phenomenon illustrated just above, happens on every level

subspace V((ls;)l) with odd s. A nice way to see this for s < 7 is the following. Consider the operator By defined as

. 3 (s 1) (s—1) . s—1) (s 1)
By=1,18 : A — Vi), Ve =vi/ (20Gy))
where II; is the projector onto V(ls 3)1)
. (s—1) 7 (s—1)
IIs = Vg — Vg

By definition, if By 1Ts;1 = 0, then we are assured that there exists a field ©4_1 such that 9T, 1, = 00,_1. This
means that a conservation law is present at the level s iff Bs; has a non-vanishing kernel. The two conservation
laws we found above appear for a very simple reason

dim (V) ) = dim (V) = 0.

This suggests that we can try to compare the dimensions of the spaces Ay and V(ls 3)1) we can do this by using the

character formulae [9]:

> ¢° dim (fi((f;)l)) =1-xan@, xan@=][a-¢)",
s=0 n=1
n#3

o0

> g¢* dim (A) =(1-gxo@+g, x@=0-a [[a-¢)"+q.
s=0

n=2
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In the following table we list the first few dimensions
| s [1[2]3]4]5]6]7]8]9]10]11]
aim (Vi) [ 1o ]of2]o]3]1][4a] 2]7
dim(f\s)01021325487

We see that for s odd and s < 7, dim (AS) = dim (]A/((lsg)l)) + 1, meaning that Bsy1 has always at least a
one-dimensional kernel assuring the conservation laws. As s grows over 7, however, this argument fails and the
existence of higher spin conservation laws is a conjecture which finds a partial justification in the classical limit
(where their existence is guaranteed to be true).

As a last note, one should pay particular attention when c¢ takes values corresponding to the minimal models
M, . as in those cases the structure of the spaces Ay and ]}((15;)1) is warped by the infinite ladder of null-vectors.
Moreover in a minimal model, it not justified to assume that 9T = i R,_1: terms with higher powers of i might
appear.

3.2 T-operators in ®(; 3) deformed CFTs

Let us consider the theory defined by the following formal action
- -2 ~1 26%-2
(1,3) = HerT + i /dudv®(173) (u,v) , [i1] = [length] , (3.4)

defined on a cylinder of radius®® R: {(u,v) u+ R = u} with u playing the role of space and v that of time.

Here @/crr is the formal action of a conformal field theory with ¢ < 1 and @y 3y is its primary field of conformal
dimension hy 3 = 2% — 1. We recall the relation between 3 and the central charge:

1-c 25 —c e 9 9
8= \/ —\/ 51 = c=13-6(8"+57) .

1
As we already mentioned above, important facts of deformed CFTs are the presence of a mass scale m oc j11-#2
and the breaking of conformal invariance, which translates into the non-holomorphicity of the energy-momentum
tensor. As we have seen above, however, in a ®(; 3)-deformed CFT, the local fields Tox(w, W) satisfy the continuity
equations

0Tk (w, W) = OO2p_2(w, W) , OT 2 (w, W) = OOg4_o(w, W) ,

meaning that the integrals

Iop—1 = / ;l: [Tor(w, W) + O2—2(w, )] , (35)
i d

Iok—1 /% [Tok(w, W) + Oop—2(w, )] , (3.6)
0

do not depend on the “time" v and are, as such, integrals of motion. It is not hard to verify, at least for small &, that
these integrals are in involution

Mok—1,T2-1] = [Tog—1,12-1] = Tog—1,I2-1] = 0.

Notice that H =1; +I; and P=1; — I are, respectively, the Hamiltonian and the momentum operators of 2{(173)4

23 We slightly change the geometry here by introducing the radius as a new parameter of the system. We hope this will not be confusing.
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The left chirality In order to describe the integrable structures of our deformed CFT, we have to consider both
chiralities at the same time. To this end, let us construct the left-chiral integrable structure of the CFT, which we
will then join with the right-chiral part when moving to the massive model.

Remember that the starting point of our construction was the Feigin-Fuchs free field representation of the
energy-momentum tensor (2.13), which allows us to express the right-chiral Hilbert space ., as a direct sum of
Fock spaces A, = @, Fp,. with the latter generated by the free action of the Heisenberg operators {a_,}, -,
on the “vacuum’ |p), such that P |p) =p|p) and a, |p) =0, ¥Yn > 0. We will need to repeat these steps in the
left chirality, so let us introduce the following free field”*

P(w) =iQ — |—wP—|—Z —n _'*"w,
n#0

where the operators {@, P; E”}Zizo span an Heisenberg algebra

— = i n
[QvP] = §ﬁ2 ) [anaam] = §ﬁ26n+m,0 .
The full Hilbert space can then be expressed as

Herr = @ (Fpe ©F _p.)

a

where Z,, ® F _,. is an irreducible representation of Vir @ Vir with highest weights (h(p), h(p)) and highest-
weight vector |p) ® | —p).
Now we, most simply, define the left-chiral L-operator as

R
L;j(\) =7 e ™PH 2 exp )\/dﬁ (V_ (E)Q%E + V+(E)q_%F) ,
0

where {H, E, F'} are U, (sl(2)) generators and V 1 (W) are the left-chiral vertex operators:
Vi(m) i2<p

Just as for the right-chiral L-operators they satisfy a relation with the U, (s1(2)) trigonometric R-matrix which we
will call "LLR relation”:

(L) @1) (1@ Ly(V)) Ry (A/X) =Ry (A/N) (1@ Ly (X)) (Li(A\) @1) .

Notice the different ordering of this relation with respect to the corresponding one for the right chirality (2.17), which
can be traced down to the minus sign in front of P in the definition of @. From the knowledge of the left-chiral
L-operator, one can repeat exactly what has been done for the right chirality and obtain the operators T;, Q. and
so on. We will not go into details as these constructions are essentially identical as the ones for the rLght chirality.

The massive integrable structure Now that we have the L-operators of both right and left chiralities, we need to
fuse them into one single object. The “vault key” holding the two pieces together will have to be the deformation

parameter /i which, we recall, carries a dimension [length]wz’? Since the spectral parameter carries a dimension
of [\] = [length]Bz_l, the most natural way (and, as it turns out, the correct one) to couple the chiralities is

Lj (uIA) = L (M5 (/)
where g1 oc fi. As usual, the T-operators are obtained taking the trace over the U, (sl(2)) representation”’
T 0lA) = o, (L ()
27

24 Note the appearance of the ratio =2, due to the rescaling on a cylinder with radius R.
% Notice the missing exponential factor in front of the L-operator. In fact Tj()\) = trr, (e’”PHfj()\)) and, when combining the two

chiralities, the exponential factors in front of L; and fj cancel each other.



3 Integrable structures of massive integrable field theories 35

The commutativity of these operators
[T (1l A), Ty (uIN)] = 0.,
is easily inferred from the RLL and LLR relations, the commutativity of the chiralities
[L;(A), Ly (\)] =0,
and from the unitarity of the R-matrices
R, (MR; (A7) =1.
The following two properties immediately descend from the definition of T; and from the properties of T; and T}:

e Massless limit: in the limit 1+ — O we recover the right and left chiral T-operators as
Tj(uA) — T, 9T,

T (ulp/N) — 1@ T;(N),
n—0

where the tensor notation is employed here to specify that T acts as the identity in the left (right) chirality
space.

e Analytic properties: the operators T are single valued functions of A2, regular everywhere except A% = 0, oo.
Moreover they inherit the asymptotic behaviour of the T and T functions:

R
log (T (ul\)) | ~_mys A,

—00 ]27'(
R /u 1+¢
log (T, (ulA) ~ miz— (%)

where
sin (j€)

m; = ———<m,
i £
sin (7r§)

and m is given in (2.22). Clearly the massive T-operators have two essential singularities: one at oo (like
the chiral operators) and the other at 0. It is natural to expect the integrals of motion (3.5-3.6) to appear in
the asymptotic expansion around these singular points.

As we already said above, all the purely algebraic relations that we displayed in the previous section transfer
directly here, without any change in their appearance. So the T-system reads:

T (ulg T (g2 A) = 1+ T,y 1 (AT, 1 (u]A)

and, when ¢ is a root of unity, it truncates to a finite system, exactly as in the massive case, which can then be
recast in a Y-system, from which a TBA equation can be extracted (under some suitable analyticity assumptions).
The difference between the massive and the massless case emerges in the analytic properties of the T-operators.
As we have seen just above, the T; possess two singularities instead of just one, which corresponds to the two
different chiralities of the massive theory. Here below we list the conjectures about the massive T-operators

e Asymptotic expansion: the integrals of motion (3.5-3.6) govern the asymptotic expansions of T = 'IF% around
its singular points A2 = 0, oo as follows

log (T(u]A)) = ma A+ = 3 CAU=200 00,

n=1
> (1-2n)(14¢) _
o (M) = ma ()= e (5) e S

where the constants C; are given in (2.23).
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o Commutation with IMs: The massive transfer matrices commute with all the massive IMs
[T (1), Tog—1] = [T (| A), Tor—1] = 0 .

e Relation between p and [i: the parameter entering in T is related to the deformation parameter /i as follows

W T —28) (337 —1) |T(1—-3F)T (1 - B?)

b 0= resrE) |,

The last of these conjectures might appear a bit outlandish, however it becomes natural when one considers T to
actually be the transfer matrix of the sine-Gordon model. The reasons leading us to conjecture that the operators
T; introduced above can be interpreted as T-operators of sine-Gordon model is briefly discussed in the following
subsection.

3.3 Moving on to sine-Gordon model

The quantum sine-Gordon model on a cylinder of radius R is a massive integrable QFT described by the following

action
R

roT
Aoy = /du / dv {16—77 (8M¢(u,v))2 + 2ficos (Bo(u,v))|
0 —00
where ¢(w, W) is a scalar field, B is the coupling and j is a parameter with dimensions [length]252’2. It possesses
an infinite set of integrals of motion whose form is exactly the same as (3.5-3.6), where now Thx, ©ap_o, Ty and

Oy, are local fields of sine-Gordon model and /i has to be replaced by ji. The spectrum of the model contains
two topologically charged particles (the soliton and the anti-soliton) with mass 9t

14¢

r) [nE)] :
2
9)1:7 1 2 - i 125 , 521[3—62’ (37)
p : _
r(a+s) L e
and a set of neutral particles (bound-states), whose number depends on the coupling, with masses

m; = 2Msin (j7E) '*11 st <1

= sin (j7€) , j=5L...,nstn %

The connection between sine-Gordon model and the perturbed CFTs we considered above is not evident at first.
However, as it was unveiled in [43, 44] these latter can be obtained as "quantum group reductions” of the former,
as we will recall very briefly. When considered in infinite volume, sine-Gordon model exhibits a symmetry with
respect to the quantum group Us (SL(2)), where

2

q:eiﬁ

¥

This means that the soliton and anti-soliton transform in the two-dimensional representation of this quantum group

and that the local IMs and S-matrix commute with the generators {ﬁ,E,F} of the associated quantum algebra

Uz (s1(2)). Now, the Hilbert space £ of sine-Gordon model in infinite volume, contains a subspace 775y ",
consisting of those states annthilated by the U; (sl(2)) generators. What is remarkable is that this last Hilbert
space can be interpreted as the space of states of a certain local QFT, which was called restricted sine-Gordon
model. As it turns out, this model coincides exactly with the perturbed CFT (3.4) (considered in infinite volume!)
where the parameters [ and fi are related as

™

L (-2 o) [P ra-se)]t
= 31— )T (367 | M
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Although in finite volume the quantum group symmetry breaks down, it is still possible to define singlet states and
their Hilbert sub-space 775 """ and these still allow an interpretation in terms of deformed CFTs. In particular

R, singlet ~
Hc ~ H1,3) = AT -

It is not difficult to verify that the action of massive T-operators and their properties, defined in the previous sub-
section naturally extend to the full sine-Gordon Hilbert space % so that they can be interpreted as the transfer
matrices of the unrestricted sine-Gordon model. In this optics, the Feigin-Fuchs fields are naturally identified with
sine-Gordon one as 5

plw) = Sotw.0),  Bm@)=-2o(0,R-m).

It can moreover be shown that the truncation of the T-system happens in sine-Cordon as well, meaning that it is
possible employ the methods of subsection 2.4 to obtain TBA-like equations for the ground state of the system?®. It
is as well possible to proceed as in sub-sections 25 and 2.6, constructing the operators Q and A and recovering
the Destri-deVega equation. This path is actually more rewarding than the Y-system one, since it works for any
value of the coupling 82 (in the region (0, 1), as discussed for the CFTs). In order to obtain the Q-operators, one
proceeds in the same exact way as for the operators T, that is by combining the right and left-chiral L-operators in
the g-oscillator representation into a single operator L+ and then taking its trace. We will not delve in the detail
of this construction as, really, it is a simple variation on the theme of what has been done in the CFT case. We
wish instead to present a different approach to the integrability structure of sine-Gordon model, which relies on a
surprising and still not completely understood connection between classical and quantum worlds.

4 Sine-Gordon model and the massive ODE/IM correspondence

In this section we wish to briefly present an approach to quantum sine-Gordon?’ model in finite geometry which was
proposed in [5] by S.L. Lukyanov and AB. Zamolodchikov. This approach relies on older studies on the so-called
ODE/IM correspondence [45, 46, 47] (see [48] for a review) which related the integrals of motion of certain CFTs
to the spectral properties of certain ordinary differential equations (ODE). This setting was extended by Lukyanov
and Zamolodchikov to the massive case [5] with the study of sine- and sinh-Gordon cases and later this method

was generalised, first to the Tzitzéica-Bullough-Dodd model [49], corresponding to the affine Lie algebra Ag2), then

to the Toda theories associated to the affine algebras A [50]. Finally, the ODE/IM was applied to the whole set
Toda field theories, associated both to simply-laced [51, 52] and non-simply-laced [53, 54] algebras.

4.1 Quantum sine-Gordon 7" and () operators

Before venturing in the description of the ODE/IM correspondence for the sine-Gordon model, we wish to recapitulate

the properties (proved or conjectured) satisfied by the operators T and Q. These properties will allow us to identify

certain particular objects in the ODE side of the correspondence with the vacuum eigenvalues of T" and @) operators.
Consider the quantum sine-Gordon model as defined by the Lagrangian®

1

Lo = 15— |(0:0)” = (9u0)” | + 2pcos (89) , (41)

which is obviously invariant under shifts of the field ¢ — ¢+2%. As a consequence, the Hilbert space ¢ splits
into orthogonal subspaces 7, characterised by the quasi-momentum k. Denote U the operator performing the shift
of ¢, then:
¢ — d+25
U : s v | ‘I)k> € A, .
| @k ) — ™5 | Dy,)

Let us also introduce the charge and parity operators as:

Co(u,v)C = —d(u,v) , Po(u,v)P = ¢(—u,v) .

% Actually, there exists a method [25] which, in theory, allows one to recover non-linear integral equations from the Y-system for all the
eigenvalues.

27 This approach can actually be extended to sinh-Gordon model without too many difficulties.

2 Note that here we set the parameter in the Lagrangian as p, while before it was ji. We hope this will not create too much confusion.
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o0
This model possesses an infinite set of T-operators {T%} and two Baxter Q-operators Q4. Their properties,
j=1

which are mostly conjectured on the basis of massless, classical and discrete limits analysis, are listed below. From
this moment on we will drop the explicit dependence of T and Q on the parameter p. We will also use the variable
0 = log ()\Hf) instead of the spectral parameter.

Properties of T-operators

e Mutual commutativity:
e Invariance under discrete shift:
e Invariance under charge conjugation:

e Parity conjugation:
PT; (0)P = T;(~6),

e Analytic properties: the functions T;(#) are entire functions of the variable  with essential singularities at
0 — oo,
e Hermiticity:
TH(6) = T5(67) ,
e Periodicity:
T; (0 +im(1+¢)) = T;(0)
note that this property is the translation in terms of 8 of property of single-valuedness of T; as a function of
A2,

e Fusion relation (T-system):

2j+1

T.(0)T; (0+iw§ 5 >_’]I‘j+% <9+iw§2j;—2> ; %<9+iﬁ52?j>,

or, equivalently

Tj <6+”T§> Tj <6_”T§) :1+’H‘j+%(9)T‘j_%(9),

e Asymptotic behaviour on the real line:
oo

on — 1
log(T%(G)) ~ S 2(-1)"sin <7rg n >On]12nle<12">9,

0
—+00 "0 2

Nl=

60— —o0

- 2n—1Y\ , -
log (']T (0)) ~ E 2(—1)"sin <7r§ n2 ) Cpl_onire®=1D0
n=0

where we set I_y =1_; = & and Cy = m.
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Properties of Q-operators

e Commutativity:

[Q+(6), T;(6")] = [Q+(0), Q= (0")] = [Q+(6), Q- (6')] =0,

e |nvariance under discrete shift:
[Qi(e)vU] =0,

e Charge conjugation:

(CQ:I: (Q)C = QZF (0) )

e Parity conjugation:

]P)Qi(e)]? = Q:F(—e) >

e Analytic properties: the functions Q4 (0) are entire functions of the variable 8 with essential singularities at
0 — 400,

o Hermiticity:
QL(6) = Qx(6) .
e Baxter T-(Q) relation:
T} (6)Qx(6) = Qu (8 +imé) + Qu (6 — ims) ,
e Shift property:
Q4 (0 +im(€+1)) =UQ4(0) ,
Q- (0+in(€+1)=U"'Q-(0),

this property, along with the T-Q) relation, can be regarded as defining the Q-operators as “Bloch-wave”
solutions to a second order finite difference equation,

29

e Quantum Wronskian:

Q4 (9 + iwg) Q- <9 — m%) - Q. (9 - iw§> Q- <0 + mg) =U"'-U,

e Wronskian expression of operators T;:

T;(0) (U - 1) = {Q+ (9+iw§2j+ 1) Q- (9— i7r§2j+1) +

2 2
27+1 27+1
o, (-2 o (6+imel )] |
2 2
e Leading asymptotic:
OFin s
Q(6) ~ U*¥Stexp |MR———| ., OeHy,
R(9)—o0 4 cos (w%)
—OLin &4L
Qi) ~ Uris dexp [MRE - 0eH,
R(0)——o0

4 cos (w%)

where Hy = {9 eC ‘ 0 < £3(0) <€+ 1)} and S is some operator such that

[S,P]=[S,U]=0, CSC=S"', sf=§.

29 This is a consequence of the periodicity of T;.
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4.2 The modified sinh-Gordon equation and its linear problem

We begin our study of quantum sine-Gordon starting from an apparently far away point. Indeed let us consider the
following classical partial differential equation

90n(z,%) — 2153 4 p(2)p()e 155 =0, p(z) = 22 — 52, (4.2)

where z and Z are formal complex variables in no way related to the space-time of the quantum model. On the other
hand, the real and positive parameters a and s will be, later, related to parameters of the quantum model. This
equation, whose name is modified sinh-Gordon (MshG) equation, arise in the context of differential geometry (see
e.g. [55]) where it describes the conformal metric of certain surfaces with smooth constant mean curvature immersed
in R3. The recent interest in this equation was sparked by its appearance in the computation of gluon scattering
amplitudes in AN/ = 4 super Yang-Mills at strong coupling [56]; these can be analysed in terms of classical strings
in AdSs which, in turn, lead to the study of minimal surfaces, whence the MshG equation arises. This equation
is integrable, as we will see, for any choice of the function p. In our case, the MshG equation (4.2) possesses an
evident discrete symmetry

(2,2) — (o z,e %), (4.3)

and we will restrict our attention to solutions which respect this symmetry. More in detail, it is not difficult to verify
that there exists a family of solutions to (4.2), parametrised by the real number [ € [—%, %] satisfying the following
properties (here we sit on the real slice of C2, by setting z = pe'® and Z = pe~1?)*":
1. Periodicity:
m
(e, ¢) =nlp, o+ —)

or, in other words, we consider the MshG equation restricted on the cone of apex angle -
T T ™
C= = { ) R+ T 5 79 \ - } )
e = {(h9) R x [~ 20) \ 6+~ o
2. Analyticity: the solution 1(p, ¢) is single-valued, real and finite everywhere on @’z with the sole exception
of p =10, 00,
3. Large-p asymptotics:

n(p,¢) ~ alogp+o(l),
p—00

4. Small-p asymptotics:
21 log p + O(1 i< 3
n(p,¢) ~ g0+ Ol ! SR
p=0 | £logp+ O (log(—logp)) [ ==%3

Starting from the above small-p asymptotics we can iteratively construct a (z,%) — (0, 0) expansion of the following
form

0 —2no
n(z,z) =1 log (2Z) + no + ,; Vi (220"“ + EQO‘k) — gl 7(16_ IE (zE)lfﬂ
62770
n L2

arae &

where ng and {7} .-, are integration constants that are to be determined by imposing the properties listed above
on this expansion. The utility of this expression is that it remains valid on the whole C2, which means that we can
safely fix z to some finite value and send only Z — 0, obtaining

o0

0(2.7) _~ log(22) +mo+9(2),  (2) = > qz?n

z—r
k=1

30 Note that here ¢ denotes the argument of z and not the sine-Gordon field! Hopefully this will not cause confusion.
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As hinted at above, the MshG equation is integrable and, as such, possesses a Lax pair {.@,@} and an associated
linear problem (from here on, we will omit the explicit dependence on the complex variables unless necessary and

denote p = p(z)) ~
29 =0 |, 7 =0+ 30nc® —e€ (cTe"+ o pe)
- (4.4)

¥ =0 , 9 =0— 30003 — (c=e"+otpe ™)’

where W is a 2D vector function and {03,ai} are the usual Pauli matrices

s (1 0 L (01 _ (00
"_<0—1"’_00"’_10'

The parameter 6 =log X is called spectral parameter, just as 8 = log A; even though the two will turn out to be one
and the same thing, we prefer to denote them differently to stress the difference in their origin.

Analysis of the linear problem around (z,z) = 0 Clearly the general solution to linear problem are not known,
however the knowledge of the asymptotic behaviour of the function n allow us to perform a local analysis at the
singular points which, as easily verified, are the same as those of MshG equation. Let us start by analysing the
behaviour of solutions around zero. Notice how the linear problem (4.4) is not invariant under the discrete symmetry
(4.3); instead it is invariant under a joint rotation of ¢ and 6°':

This property suggests that a solution W of the linear problem should be represented, in the neighborhood of zero™,
by a function of i¢ + 6. Another easily verified symmetry is the parity

. 0 —0—im
II D — 03 PDo3
9 — 0° Do

under which the solution should behave as

II : U — ™ g3 | for some 7 € R.

With these facts in mind, we define two particular solutions \I/i(p,¢|9~) to the linear problem specifying their
asymptotic behaviour (note that we assume [I| < 3)

v 1 ( 0~) v 1 <e<i¢+é>l)
T =0\ Jcos (1) \eliotOt ) 2 >0 Jcos (nl) 0 '

Here follows a list of easily proven properties of these two solutions

e Analyticity: the solutions W (p, ¢|6) are entire functions of 6 for any ¢ € [~ 3=, 5=) and any p > 0,

e ()-invariance

Ve (pot o l0 =i ) =0 (po— o l0+in-) .

e II-transformation ~ ) -
Uy (p, 0|0 +im) = —eF 63, (p, 9|6) |

U_(p, |0 +im) = T3 _(p,d|0) ,

31 The rotation in d is actually an hyperbolic rotation

32 This arqument works around zero, since this is a Fuchsian singularity of the linear problem. The same reasoning do not hold around oo,
since the presence of the potential p causes the Stokes phenomenon to arise. We will return on this later, but, in short words, this means that
solutions to (4.4) can be represented correctly as asymptotic expansions only inside wedges of the complex plane; as one tries to move outside
these, the control on the asymptotic behavior gets lost.
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e Linear independence
1
det (¥4, ¥_)| = ——=
e |( +> )| COS(ﬂ'Z) ’
where (U, U_) is the matrix with ¥4 and ¥_ as columns. This determinant joins the role of Wronskian of
solutions,

e Complex-conjugation: _ 5
Ui(p, ¢l0) = o' W= (p, ¢ — 0) i
i ) , Vo eR.

Large p analysis of the linear problem Now we move to the study of large-p asymptotic of solutions to the linear
problem. For this task we can employ the WKB method [15] and see that there exists a solution Z_(p, ¢|6) which
is uniquely specified by its asymptotic behaviour

= Y o [227 cosh (6+ia+10)| , Iol < (45)
- p—r00 —6|¢% P a+1 ’ ( + 1) '
Note that this behaviour is limited to the wedge |¢| < Q(OLTii*l)A when crossing one of the lines ¢ = i2(a+1) the

solution moves from a decaying behaviour to a growing one. This particular fact is called Stokes phenomenon and
the lines ¢ = :tQ(aJrl) are known as Stokes lines. The reason why we have to limit the asymptotic behaviour to a
given sector of the complex plane is that only there we have full control over the decaying solution. In fact, when
rotating this last across a Stokes line, exponentially decaying factors might appear in the expansion without us
noticing; these will then, when crossing another Stokes line, become exponentially growing, depriving us completely
of the control on the asymptotic expansion. We will not delve further in this fascinating subject and direct the
interested reader to the book [57], which present this subject in a modern way, underscoring its connections with
the theory of transseries, Borel summability and resurgent functions.

We have seen that a basis of solutions of our linear problem is given by {¥4}, which are entire functions of
0. This immediately means that Z_ as well is entire in # and we can thus perform analytic continuation in it. In
particular we can exploit the existence of the symmetry €2, which allows us to generate a new solution starting from

S ~ - o -
Z+(p0lf) = Q [2-(p.010)| == (po+ 21T - iZ) .
One immediately obtain the asymptotic expansion of this function

= (e 2P cosh (0 +i(a+1 T
B+ oo T iy | exp |20 cos ( +i(a+ )(;5) , |¢|<2(a+1)’

which allows us to compute the determinant
det |(E_,E4)| = —2i.

Thus {21} is another basis of the space of solutions to the linear problem (4.4). This, however, is not the end as
we can in fact repeatedly apply the transformation €2 on =_ and generate an infinite set of solutions

Za(p. 0l0) = 0" [2-(p.010)| =Z (po+mlf—int) .

Note that these solutions can be interpreted as decaying solutions in the wedge —3 L2 < ¢ < Z1=20

Spectral determinants Since the two solutions W4 are linearly independent, they form a basis of the space of
solutions of the linear problem (4.4), meaning that we can expand the solution =_ as

E-(p,010) = Q—(0)¥+(p, 6|0) + Q- (O)V_(p, ¢10) ,

where the connection coefficients
Q1 = tcos(nl)det |(E_,T4)|,
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are functions of § and [ only. They are also known as spectral determinants for the central problem of (4.4). This last
denomination simply means that the zeroes of these functions are precisely the eigenvalues of the linear problem
considered on functions in L2(0,00): those values of the spectral parameters for which the function Wy decays at
infinity. The notation chosen for these functions is not random: in the following sub-section we will see how these
functions can be interpreted as the ground state eigenvalues of quantum sine-Gordon @-functions. Similarly we
can exploit the existence of the basis {E41} and expand the solutions Z,, defined above as linear combinations:

= Ao =~ . n+1
Zn(p, 0l0) = Tu_z (6‘ T

)20 + T (5= i) =10 000)

Here too the coefficients

- 2n+1 1 _ _
T, <9—|ﬂ' 5o, )—5det|(:2n+1,:)| (4.6)

- 2n+2 1 _ _
Tys (9—|7T o ) :Edet|(:2n+1,:+)| )

are spectral determinants, this time for the lateral problems of of our linear system. These problems consist in
determining solutions to (4.4) decaying in both wedges

T 1 T 1 m4n + 3 m4dn + 1
T T2 and =X _r f 7
5a-1 9 31 941 <9< 3,-1 PmeZ,
T 3 T —1 mdn +1 mdn — 1 1
_r T =% and =X _rame 7+ -7
sa 1 % 351 g1 <9< 3,1 PmeZ+3Z,

and its particular eigenvalues corresponds to the zeroes of the functions 7). Again, the choice of notation for these
spectral determinants hints at the fact that they can be interpreted as eigenvalues of the operators T}, as it will be
shown later.

4.3 From spectral determinants to the quantum (-operators

Before beginning to unveil the correspondence between the linear problem (4.4) and the quantum world, let us list
the properties of the spectral determinants @+ introduced just above

e Analyticity: Qi(6‘~) are entire functions of 6, note also that the functions are defined for [ = j:% by continuity

lim (Q+(0) - Q-(8) =0

I—>=+3

e Quasi-periodicity:

0 (0421 it (6o x0T
2c 2

(67

e Complex conjugation: _ . .
QL(0) =Q+(0"), VIR,

e Parity symmetry: ~ 5 ~
Q+(0) =Q=x(-0), Vo eR,

e Quantum Wronskian:

s LT s LT s . T s LT .
Q+(9+55)Q,(a—55)—Q,(9+EE)Q+(9—55)_—mcm@m. (4.7)
In order to proceed, it is convenient to define the following single function of two variables
ng‘ Co0<k<d
Q0. k) = e .
Q4m’ ~lck<o



4 Sine-Gordon model and the massive ODE/IM correspondence 44

where k = 0 is treated by continuity. Since, obviously, Q(0,k) = Q(8,k + 1), this function admits an analytic
extension to all & € R. The property above become in term of this function

Q <é+ ot 1,15) .y
Q*(0.k)=Q(—0.k),  Q(-0,k) =Q(0,—k)
Q(é+i%,l§:)@(0—|% —k) Q(é—i%,é)Q(@—l—lg —k) —2¢sm(2ﬂ§;) .

The similarity of the above properties with the one listed at the beginning of this section for the operators Q4 are
striking, however, in order to univocally fix the function @ we still need to determine its asymptotic behaviour and
the distribution of its zeroes. Thanks to the property of periodicity we can concentrate on the strip H = H, U H_

where Hy = {9 eC \ 0<=£3(0) < WQTH} With a careful and thorough WKB analysis of the solutions of the
linear problem, it is possible to establish the following behaviours

. 9$Iﬂ'a+1
. e ~
~ e (k) exp |r———| 0eHy,
R(G)—ro0 "dcos (£)
—0~ii7r0‘—Jrl N
~ ey (Ryexp [r—— |, feHy,
R(B)——oo "4cos (£)
: lta r(1+24)
where we introduced r = B s with B = 2ﬁr(*+ m; and the function
27 2a
(R o
4k 1 0 < k < 5 ,

)

Sk (k) =1,  Lk+1)=S(k).

Now that we verified that the asymptotic of the function @ has exactly the same form of the operator Q4 (for
k > 0), the fact that we are actually dealing with an eigenvalue of this last in disguise is becoming more than a
simple suspect. What is left to do is to identify which is this specific eigenvalue by studying the pattern of the
zeroes of Q(A): this is done again by thorough WKB analysis (remember that they are the eigenvalues of a central
problem for the system (4.4)). As it turns out, for any k € R, these zeroes are real, simple, symmetrically disposed
with respect to the origin and accumulating at the singularities 6 — oo, which identifies the spectral determinants

which enjoys the symmetries

Q(0, k) with the eigenvalues Q(vac)( ) of the operator QL (6) on the vacuum state with quasi-momentum k. The
parameters on the two sides of this correspondence have to be identified as

a—l:%—l, k=k, (4.8)
B? 1_ B2 22252
r=MR — s= (%) lwr ( (ﬁf) )] ) (4.9)

where 9t is the soliton mass of quantum sine-Gordon (3.7) and g is the parameter appearing in the Lagrangian
(4.1).
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The NLIE equation Just as we did in the previous section, we wish to use the analytic properties of the
spectral determinants/@Q-functions to derive a NLIE equation, as a further verification of the identification we
performed. From now on we will drop the tildas on 6 and k and use equivalently «, £ or 3, depending on
notational reasons. Consider the following function

y QO +in&, k)
E<9)_I10g[@(9—iw§,k) ,
with the branch of the logarithm fixed so that
e? ™
e(d) —r —2rk , [$(8)] < 3

2 cos (w%) R()—00
Thanks to this function we can label univocally the zeroes of @ by integers n € Z in such a way that
On, < Opt1, e(0,) =7(2n+1),

where the last relation descends from the Quantum Wronskian relation. The zeroes {f,},, ., are more conve-
niently represented in the following form

N —2« >
Pt = )¢ k) 20y L
2B (k) ,n<0 2

which makes more explicit the symmetry n — —n — 1. The “zeroes” {E,} , are functions of k and satisfy
the following relations
E.(k+1)=E,+1(k), Eo(—k — 1)Eo(k) = s**,

and have the following asymptotic behaviour
2m et
E,(Lk) oo [E (2n + 2k + 1)] ,

which, again, can be obtained by thorough WKB analysis of the linear problem. We have now all the informations
needed to express the function @@ as a Hadamard product

Q,k) = Cf(k)ezkea%l lo_o[ 1 g2 e . Szaﬁ

n=0

which converges only for & > 1; if one wishes to extend the above product to the region 0 < @ < 1, then
a Weierstrass prime multiplier has to be added in order to regulate the divergency of the product [58]. The
normalisation in front of the product satisfies the following relations

Ck)=C(—k), Ck)=—s2E(k)C(k+1).

We can finally write down the NLIE equation for the function € by combining the Hadamard representation
of the @, its analytic properties, its asymptotic behaviour and the equation (6,,) = 7(2n + 1), obtaining

o0

e(0) = =27k + rsinh § — 2 / do'G(6 —0')S [1og (1 + e—iew/—io)H ,
where we introduced the kernel
dv sinh (Wylz__aa) o0

G = / 27 2 cosh (7% ) sinh (7%) €

— 00
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As was expected, this equation coincides exactly with the NLIE equation for the ground state of quantum
sine-Cordon model [39], given the identifications (4.8-4.9) are made. Once € is known, one can then recover the
function @ from the following formula

a+1 r cosh 6 1
1 0+i k)) =< itk + =1 k
og(Q( +im— )> 2cos%+m +2og(Y( ) +

+2i / o' [F(@ — ¢ —i0)log (1 + e*is(f”*w))} , (4.10)

where the following kernel was introduced
7 dv eiu@
F(9) = — — .
(©) 27 4 cosh (r%) sinh (7422)

The formula (4.10) is actually valid for &(#) = 0 only; however it is possible to suitably modify it so that it
provides @ in the whole strip H4. The function .%(k) can also be recovered from the solution to the NLIE
equation

™

T do . .
log (L(k)) = « / —3 [log (1 + 67'5(9710))} )

Before closing this in-depth box we “close the circle” by recovering the integrals of motion from the asymptotic
expansion of the function Q. For this task the equation (4.10) is perfect, since it allows strightforward evaluation
of the large-|0| expansion. This most simply involves writing F'(#) as an sum over his residues in the correct
half plane and plugging it in the formula for the function @. The result is

Ca+1 ret? . 1
1 0 —k ~ —_— k+ =log (L (k
o8 (Q( i 200’ )) R(0)—Foo 4 COS (%) imh 2 og (7 (k) +
- Z [fi(zn—ne?@"*l)e - %czneﬂme} :
n=1
where we defined the following objects
, r (—1)nt 7 A0 om0 et
7 ne1) = — 577, + e (2n—1)(0 |O)1 1+ ie(0—i0) ,
£(2n-1) 4 cos (%) 1 sin (w%) T > [e g ( € )}
L al=1)2 A0 o o
n =+ e an(0 |0)1 1 ie(0—i0) )
ez cos (2man) / T {6 o8 ( te )}

which are related to the local and non-local integrals of motion, e.g.

In1 = Colon_1(k) Ty 1 ‘ o) > = Iy, ‘ P >
B , Yn>0, ,
PR " s [870) =T o)

with

0= () HEEL ) [thsm(%)p(a—kl)r(_i)r% |

a1 2/mn!

Similar formulae exist for the non-linear integrals of motion.
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4.4 The T-functions

We wish to conclude this review by pointing out the connection of the spectral determinants (4.6) to the T-functions
of Quantum sine-Gordon. In order to bring it into light, we can expand the Z functions entering the definition of T}
in terms of the basis ¥4, remembering that O [P1] = UL and then use the quantum Wronskian relation (4.7). The
result is, as expected

7 i C2j+1 241
TJ(Q)—m[QJF(Q‘FITF 2a )Q (9—”1’ 204 >+
0. <9—m2j2;:1)c9 <0+m2j2;:1>] , (4.11)
T,0)=0, TO)=1,

which is precisely the Wronskian expression for T-functions of the quantum sine-Gordon model. We easily see that
this relation directly implies the validity of the T'-system

. 27+1 _ . 27+2 .23
T%(Q)Tj (9+I7T %0 )_Tj—é (9+I7T %0 )+Tj+§ (6‘+I7T£) .

To perform the precise identification between a spectral determinant 7" and the k-vacuum eigenvalue of the operator
T;, one has to analyse the analytic properties of the first and compare them with the last's ones. At this point it
is not a surprise anymore to find out that these properties match exactly, allowing us a perfect identification of the
results given in this section with those presented in Secss 2 and 3. We will not present these calculations here, but
encourage the interested reader to go through them.
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